std()関数は中学と高校の標準偏差
#numpy.std() 標準偏差を求める場合, デフォルトは n で除算され、偏っています。np.std の不偏サンプル標準偏差の方法は、パラメーター ddof = 1; (推奨される学習: Python ビデオ チュートリアル )## を追加することです。
#pandas.std() のデフォルトは n-1 による除算、つまり不偏です。numpy.std() のように偏りを持たせたい場合は、パラメータ ddof=0 を追加する必要があります。つまり、 pandas.std(ddof= 0) ;
統計学では、長年の経験から次のように結論付けられています。
これが母集団の場合、標準偏差の式は平方根内の n で割られます。サンプルの場合、標準偏差の式は根号 (n-1) で割られます。多くのサンプルに対しては、通常、平方根を (n-1) で割った値を使用します。 式の意味: すべての数値から平均値を引き、その二乗和を数値の数 (または数値から 1 を引いた値) で割って、結果の値の根号を求めます。 1/2 乗して、この数値はこの一連の数値の標準偏差になります。 DataFrame の description() には std(); が含まれています;>>> a array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> np.std(a, ddof = 1) 3.0276503540974917 >>> np.sqrt(((a - np.mean(a)) ** 2).sum() / (a.size - 1)) 3.0276503540974917 >>> np.sqrt(( a.var() * a.size) / (a.size - 1)) 3.0276503540974917Python 関連の技術記事の詳細については、
Python チュートリアル
列にアクセスして学習してください。以上がPythonのstdとは何ですかの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Arraysinpython、特にvianumpy、arecrucialinscientificComputing fortheirefficienty andversitility.1)彼らは、fornumericaloperations、data analysis、andmachinelearning.2)numpy'simplementation incensuresfasteroperationsthanpasteroperations.3)arayableminablecickick

Pyenv、Venv、およびAnacondaを使用して、さまざまなPythonバージョンを管理できます。 1)Pyenvを使用して、複数のPythonバージョンを管理します。Pyenvをインストールし、グローバルバージョンとローカルバージョンを設定します。 2)VENVを使用して仮想環境を作成して、プロジェクトの依存関係を分離します。 3)Anacondaを使用して、データサイエンスプロジェクトでPythonバージョンを管理します。 4)システムレベルのタスク用にシステムPythonを保持します。これらのツールと戦略を通じて、Pythonのさまざまなバージョンを効果的に管理して、プロジェクトのスムーズな実行を確保できます。

numpyarrayshaveveraladvantages-averstandardpythonarrays:1)thealmuchfasterduetocベースのインプレンテーション、2)アレモレメモリ効率、特にlargedatasets、および3)それらは、拡散化された、構造化された形成術科療法、

パフォーマンスに対する配列の均一性の影響は二重です。1)均一性により、コンパイラはメモリアクセスを最適化し、パフォーマンスを改善できます。 2)しかし、タイプの多様性を制限し、それが非効率につながる可能性があります。要するに、適切なデータ構造を選択することが重要です。

craftexecutablepythonscripts、次のようになります

numpyarraysarasarebetterfornumeroperations andmulti-dimensionaldata、whilethearraymoduleissuitable forbasic、1)numpyexcelsinperformance and forlargedatasentassandcomplexoperations.2)thearraymuremememory-effictientivearientfa

NumPyArraySareBetterforHeavyNumericalComputing、whilethearrayarayismoreSuitableformemory-constrainedprojectswithsimpledatatypes.1)numpyarraysofferarays andatiledance andpeperancedatasandatassandcomplexoperations.2)thearraymoduleisuleiseightweightandmemememe-ef

ctypesallowsinging andmanipulatingc-stylearraysinpython.1)usectypestointerfacewithclibrariesforperformance.2)createc-stylearraysfornumericalcomputations.3)passarraystocfunctions foreffientientoperations.how、how、becuutiousmorymanagemation、performanceo


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

WebStorm Mac版
便利なJavaScript開発ツール

Safe Exam Browser
Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン

MantisBT
Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック









