Python データ分析のために何を学ぶ必要がありますか?
実際、企業がデータ アナリストに必要とする基本的なスキルに大きな違いはなく、次のように要約できます。
# SQL データベースの基本操作と基礎データ管理
● 基本的なデータ分析と表示に Excel/SQL を使用できる
##● データ分析にスクリプト言語 (Python または R##) を使用できるクローラーなどの外部データを取得する
# 基本的なデータ視覚化スキルがあり、データ レポートを作成できる
##● 一般的に使用されるデータ マイニング アルゴリズムに精通している: 主に回帰分析## 2 つ目はデータ分析プロセスです。一般的に、「データの取得 - データの保存と抽出 - データの前処理 - データのモデリングと分析 - データの視覚化」の手順に従って、データ分析プロジェクトを実装します。
このプロセスによると、各パートで習得する必要がある細分化された知識ポイントは次のとおりです。
効率的な学習パスとは何ですか?これがデータ分析のプロセスです。この順序でステップバイステップで、各パートの完了目標は何か、どの知識ポイントを学習する必要があるか、どの知識が一時的に不要であるかがわかります。関連する推奨事項: 「
」
以上がPython データ分析を行うには何を学ぶ必要がありますか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

PythonArraysSupportVariousoperations:1)SlicingExtractsSubsets、2)Appending/ExtendingAdddesements、3)inSertingSelementSatspecificpositions、4)remvingingDeletesements、5)sorting/verversingsorder、and6)listenionsionsionsionsionscreatenewlistsebasedexistin

numpyarraysAressertialentionsionceivationsefirication-efficientnumericalcomputations andDatamanipulation.theyarecrucialindatascience、mashineelearning、物理学、エンジニアリング、および促進可能性への適用性、scaledatiencyを効率的に、forexample、infinancialanalyyy

UseanArray.ArrayOverAlistinPythonは、Performance-criticalCode.1)homogeneousdata:araysavememorywithpedelements.2)Performance-criticalcode:Araysofterbetterbetterfornumerumerumericaleperations.3)interf

いいえ、notallistoperationSaresuptedbyarrays、andviceversa.1)arraysdonotsupportdynamicoperationslikeappendorintorintorinsertizizing、whosimpactsporformance.2)リスト

toaccesselementsinapythonlist、useindexing、negativeindexing、slicing、oriteration.1)indexingstartsat0.2)negativeindexingAcsesess.3)slicingextractStions.4)reterationSuseSuseSuseSuseSeSeS forLoopseCheckLentlentlentlentlentlentlenttodExeror。

Arraysinpython、特にvianumpy、arecrucialinscientificComputing fortheirefficienty andversitility.1)彼らは、fornumericaloperations、data analysis、andmachinelearning.2)numpy'simplementation incensuresfasteroperationsthanpasteroperations.3)arayableminablecickick

Pyenv、Venv、およびAnacondaを使用して、さまざまなPythonバージョンを管理できます。 1)Pyenvを使用して、複数のPythonバージョンを管理します。Pyenvをインストールし、グローバルバージョンとローカルバージョンを設定します。 2)VENVを使用して仮想環境を作成して、プロジェクトの依存関係を分離します。 3)Anacondaを使用して、データサイエンスプロジェクトでPythonバージョンを管理します。 4)システムレベルのタスク用にシステムPythonを保持します。これらのツールと戦略を通じて、Pythonのさまざまなバージョンを効果的に管理して、プロジェクトのスムーズな実行を確保できます。

numpyarrayshaveveraladvantages-averstandardpythonarrays:1)thealmuchfasterduetocベースのインプレンテーション、2)アレモレメモリ効率、特にlargedatasets、および3)それらは、拡散化された、構造化された形成術科療法、


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SecLists
SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

ホットトピック









