0. はじめに
redis は KV タイプのインメモリ データベースです。データベース ストレージの核となるのはハッシュ テーブルです。select コマンドを実行して、 storage db, all 操作はすべてハッシュ テーブルに基づいています. ハッシュ データ構造と redis の実装については以下で分析します.
1.hash データ構造
/*Hash表一个节点包含Key,Value数据对 */ typedef struct dictEntry { void *key; union { void *val; uint64_t u64; int64_t s64; double d; } v; struct dictEntry *next; /* 指向下一个节点, 链接表的方式解决Hash冲突 */ } dictEntry; /* 存储不同数据类型对应不同操作的回调函数 */ typedef struct dictType { unsigned int (*hashFunction)(const void *key); void *(*keyDup)(void *privdata, const void *key); void *(*valDup)(void *privdata, const void *obj); int (*keyCompare)(void *privdata, const void *key1, const void *key2); void (*keyDestructor)(void *privdata, void *key); void (*valDestructor)(void *privdata, void *obj); } dictType; typedef struct dictht { dictEntry **table; /* dictEntry*数组,Hash表 */ unsigned long size; /* Hash表总大小 */ unsigned long sizemask; /* 计算在table中索引的掩码, 值是size-1 */ unsigned long used; /* Hash表已使用的大小 */ } dictht; typedef struct dict { dictType *type; void *privdata; dictht ht[2]; /* 两个hash表,rehash时使用*/ long rehashidx; /* rehash的索引, -1表示没有进行rehash */ int iterators; /* */ } dict;
2.hash データ構造図
3. プログレッシブハッシュの説明
# dictのht[2]には2つのハッシュテーブルがあり、初めてデータを格納するときは、 ht[0] 最小サイズ 4 のハッシュ テーブルが作成されます ht[0] の size と used が一致すると、ht[1] の dict に size*2 のハッシュ テーブルが作成されます、ht[は直接使用されません。0] のデータが ht[0] にコピーされ、プログレッシブ リハッシュが実行されます。つまり、後続の操作 (検索、設定、取得など) でゆっくりとコピーされます。新しく追加された要素は将来 ht[.0] に追加されるため、ht[1] がいっぱいになると、ht[0] 内のすべてのデータが確実に ht[1] にコピーされます。 ##4. ハッシュ テーブルを作成する
ハッシュ テーブルを作成するプロセスは非常に簡単で、dictCreate 関数を呼び出し、メモリを割り当て、中間変数を初期化するだけです。 . 要素の追加
ハッシュ テーブルに要素を追加するには、まずスペースが十分であるかどうかを判断し、次にキーに対応するハッシュ値を計算し、追加する必要があるキーと値をテーブルに追加します。 .
dict *dictCreate(dictType *type, void *privDataPtr) { /*分配内存*/ dict *d = zmalloc(sizeof(*d)); /*初始化操作*/ _dictInit(d,type,privDataPtr); return d; }
6. 要素の検索
要素の検索手順は、まずハッシュ値を計算し、ht[0]とht[1]のインデックス位置を計算して検索します。 ##
int dictAdd(dict *d, void *key, void *val) { /*添加入hash表中, 返回新添加元素的实体结构体*/ dictEntry *entry = dictAddRaw(d,key); if (!entry) return DICT_ERR; /*元素val值放入元素实体结构中*/ dictSetVal(d, entry, val); return DICT_OK; } /* *添加元素实体函数 */ dictEntry *dictAddRaw(dict *d, void *key) { int index; dictEntry *entry; dictht *ht; if (dictIsRehashing(d)) _dictRehashStep(d); /*根据key值计算新元素在hash表中的索引, 返回-1则表示元素已存在, 直接返回NULL*/ if ((index = _dictKeyIndex(d, key)) == -1) return NULL; /*如果在进行rehash过程,则新元素添加到ht[1]中, 否则添加到ht[0]中 */ ht = dictIsRehashing(d) ? &d->ht[1] : &d->ht[0]; entry = zmalloc(sizeof(*entry)); entry->next = ht->table[index]; ht->table[index] = entry; ht->used++; /*设置元素key*/ dictSetKey(d, entry, key); return entry; } /* *计算索引的函数 */ static int _dictKeyIndex(dict *d, const void *key) { unsigned int h, idx, table; dictEntry *he; /* 判断hash表是否空间足够, 不足则需要扩展 */ if (_dictExpandIfNeeded(d) == DICT_ERR) return -1; /* 计算key对应的hash值 */ h = dictHashKey(d, key); for (table = 0; table <= 1; table++) { /*计算索引*/ idx = h & d->ht[table].sizemask; /*遍历冲突列表, 判断需要查找的key是否已经在冲突列表中*/ he = d->ht[table].table[idx]; while(he) { if (dictCompareKeys(d, key, he->key)) return -1; he = he->next; } if (!dictIsRehashing(d)) break; } return idx; } /* *判断hash表是否需要扩展空间 */ static int _dictExpandIfNeeded(dict *d) { /*redis的rehash采用的渐进式hash, rehash时分配了原来两倍的内存空间, 在rehash阶段空间必定够用*/ if (dictIsRehashing(d)) return DICT_OK; /* hash表是空的需要初始化空间, 默认是4*/ if (d->ht[0].size == 0) return dictExpand(d, DICT_HT_INITIAL_SIZE); /* 已使用空间满足不了设置的条件*/ if (d->ht[0].used >= d->ht[0].size && (dict_can_resize || d->ht[0].used/d->ht[0].size > dict_force_resize_ratio)) { /*扩展空间, 使用空间的两倍*/ return dictExpand(d, d->ht[0].used*2); } return DICT_OK; } /* *扩展空间或者初始化hash表空间 */ int dictExpand(dict *d, unsigned long size) { dictht n; /* 对需要分配大小圆整为2的倍数 */ unsigned long realsize = _dictNextPower(size); /* 如果空间足够则表明调用错误 */ if (dictIsRehashing(d) || d->ht[0].used > size) return DICT_ERR; n.size = realsize; n.sizemask = realsize-1; n.table = zcalloc(realsize*sizeof(dictEntry*)); n.used = 0; /*hash表为空初始化hash表*/ if (d->ht[0].table == NULL) { d->ht[0] = n; return DICT_OK; } /*新分配的空间放入ht[1], 后面一步一步进行rehash*/ d->ht[1] = n; d->rehashidx = 0; return DICT_OK; }7. 要素の削除要素を削除するには、まず要素を検索し、次にハッシュ テーブルから要素を削除します。これで、dictDelete を呼び出して要素を削除すると、スペースも削除されます要素
dictEntry *dictFind(dict *d, const void *key) { dictEntry *he; unsigned int h, idx, table; if (d->ht[0].size == 0) return NULL; /*如果正在进行rehash, 执行一次rehash*/ if (dictIsRehashing(d)) _dictRehashStep(d); h = dictHashKey(d, key); /*由于可能正在rehash, 因此要从ht[0]和ht[1]中分别进行查找, 找不到返回NULL*/ for (table = 0; table <= 1; table++) { idx = h & d->ht[table].sizemask; he = d->ht[table].table[idx]; /*遍历冲突列表查找元素*/ while(he) { if (dictCompareKeys(d, key, he->key)) return he; he = he->next; } if (!dictIsRehashing(d)) return NULL; } return NULL; }ハッシュ コマンドハッシュ コマンドの操作は比較的単純です。デフォルトのストレージ構造を表すハッシュを作成する場合、それは辞書ではないことに注意してください。しかし、ziplist 構造です。
redis の Ziplist データ構造を参照できます。hash_max_ziplist_entries と hash_max_ziplist_value の値は、しきい値として使用されます。hash_max_ziplist_entries は、ziplist 内の要素の数がこの値を超えると、この値を超える必要があることを意味します。 dict 構造に変換; hash_max_ziplist_value ziplist 内のデータ長がこの値を超えると、dict 構造に変換する必要があることを示します。
#Redis 関連の技術記事の詳細については、
## 列にアクセスして学習してください。以上がRedisハッシュの実装方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Redisのコア関数は、高性能のメモリ内データストレージおよび処理システムです。 1)高速データアクセス:Redisはデータをメモリに保存し、マイクロ秒レベルの読み取り速度と書き込み速度を提供します。 2)豊富なデータ構造:文字列、リスト、コレクションなどをサポートし、さまざまなアプリケーションシナリオに適応します。 3)永続性:RDBとAOFを介してディスクにデータを持続します。 4)サブスクリプションを公開:メッセージキューまたはリアルタイム通信システムで使用できます。

Redisは、次のようなさまざまなデータ構造をサポートしています。1。文字列、単一価値データの保存に適しています。 2。キューやスタックに適したリスト。 3.非重複データの保存に使用されるセット。 4。ランキングリストと優先キューに適した注文セット。 5。オブジェクトまたは構造化されたデータの保存に適したハッシュテーブル。

Redisカウンターは、Redisキー価値ペアストレージを使用して、カウンターキーの作成、カウントの増加、カウントの減少、カウントのリセット、およびカウントの取得など、カウント操作を実装するメカニズムです。 Redisカウンターの利点には、高速速度、高い並行性、耐久性、シンプルさと使いやすさが含まれます。ユーザーアクセスカウント、リアルタイムメトリック追跡、ゲームのスコアとランキング、注文処理などのシナリオで使用できます。

Redisコマンドラインツール(Redis-Cli)を使用して、次の手順を使用してRedisを管理および操作します。サーバーに接続し、アドレスとポートを指定します。コマンド名とパラメーターを使用して、コマンドをサーバーに送信します。ヘルプコマンドを使用して、特定のコマンドのヘルプ情報を表示します。 QUITコマンドを使用して、コマンドラインツールを終了します。

Redisクラスターモードは、シャードを介してRedisインスタンスを複数のサーバーに展開し、スケーラビリティと可用性を向上させます。構造の手順は次のとおりです。異なるポートで奇妙なRedisインスタンスを作成します。 3つのセンチネルインスタンスを作成し、Redisインスタンスを監視し、フェールオーバーを監視します。 Sentinel構成ファイルを構成し、Redisインスタンス情報とフェールオーバー設定の監視を追加します。 Redisインスタンス構成ファイルを構成し、クラスターモードを有効にし、クラスター情報ファイルパスを指定します。各Redisインスタンスの情報を含むnodes.confファイルを作成します。クラスターを起動し、CREATEコマンドを実行してクラスターを作成し、レプリカの数を指定します。クラスターにログインしてクラスター情報コマンドを実行して、クラスターステータスを確認します。作る

Redisのキューを読むには、キュー名を取得し、LPOPコマンドを使用して要素を読み、空のキューを処理する必要があります。特定の手順は次のとおりです。キュー名を取得します:「キュー:キュー」などの「キュー:」のプレフィックスで名前を付けます。 LPOPコマンドを使用します。キューのヘッドから要素を排出し、LPOP Queue:My-Queueなどの値を返します。空のキューの処理:キューが空の場合、LPOPはnilを返し、要素を読む前にキューが存在するかどうかを確認できます。

RedisクラスターでのZsetの使用:Zsetは、要素をスコアに関連付ける順序付けられたコレクションです。シャード戦略:a。ハッシュシャーディング:ZSTキーに従ってハッシュ値を分配します。 b。範囲シャード:要素スコアに従って範囲に分割し、各範囲を異なるノードに割り当てます。操作の読み取りと書き込み:a。読み取り操作:ZSetキーが現在のノードのシャードに属している場合、ローカルで処理されます。それ以外の場合は、対応するシャードにルーティングされます。 b。書き込み操作:Zsetキーを保持しているシャードに常にルーティングされます。

Redisデータをクリアする方法:Flushallコマンドを使用して、すべての重要な値をクリアします。 FlushDBコマンドを使用して、現在選択されているデータベースのキー値をクリアします。 [選択]を使用してデータベースを切り替え、FlushDBを使用して複数のデータベースをクリアします。 DELコマンドを使用して、特定のキーを削除します。 Redis-CLIツールを使用してデータをクリアします。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

Safe Exam Browser
Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。
