(1) バイナリ ツリーが空の場合、それは何も行わず、空を返します。
(2) ルート ノードにアクセスします。
(3) 左側のサブツリーの事前順序走査。
(4) Preorder は、右のサブツリーをトラバースします。
a. バイナリ ツリーの事前順序走査のための再帰的アルゴリズム:
void PreOrderTraverse(BiTree BT) { if(BT) { printf("%c",BT->data); //访问根结点 PreOrderTraverse(BT->lchild); //前序遍历左子树 PreOrderTraverse(BT->rchild); //前序遍历右子树 } }
b. スタックを使用して各ノードの正しいサブツリーを保存するバイナリ ツリー事前順序トラバーサルの非再帰アルゴリズム:
( 1) ツリーが空の場合、ポインタ p はルート ノードを指します。p は現在のノード ポインタです。
(2) まず現在のノード p にアクセスし、p をスタック S にプッシュします。
(3) p がその左の子を指すようにします。
(4) p が空になるまで手順 (2) と (3) を繰り返します。
(5) スタック S から最上位の要素をポップし、p をこの要素の右側の子にポイントします。
(6) p が空になり、スタック S も空になるまで、手順 (2) ~ (5) を繰り返します。
(7) トラバースが終了します。
スタックの事前順序走査を使用する非再帰アルゴリズム:
void PreOrderNoRec(BiTree BT) { stack S; BiTree p=BT->root; while((NULL!=p)||!StackEmpty(S)) { if(NULL!=p) { printf("%c",p->data); Push(S,p); p=p->lchild; } else { p=Top(S); Pop(S); p=p->rchild; } } }
c. バイナリ リンク リストを使用するstorage バイナリ ツリーの事前順序走査のための非再帰アルゴリズム:
void PreOrder(pBinTreeNode pbnode) { pBinTreeNode stack[100]; pBinTreeNode p; int top; top=0; p=pbnode; do { while(p!=NULL) { printf("%d\n",p->data); //访问结点p top=top+1; stack[top]=p; p=p->llink; //继续搜索结点p的左子树 } if(top!=0) { p=stack[top]; top=top-1; p=p->rlink; //继续搜索结点p的右子树 } }while((top!=0)||(p!=NULL)); }
void InOrderTraverse(BiTree BT) { if(BT) { InOrderTraverse(BT->lchild); //中序遍历左子树 printf("%c",BT->data); //访问根结点 InOrderTraverse(BT->rchild); //中序遍历右子树 } }
b. スタック ストレージを使用したバイナリ ツリーの順序トラバーサルのための非再帰アルゴリズム:
void IneOrderNoRec(BiTree BT) { stack S; BiTree p=BT->root; while((NULL!=p)||!StackEmpty(S)) { if(NULL!=p) { Push(S,p); p=p->lchild; } else { p=Top(S); Pop(S); printf("%c",p->data); p=p->rchild; } } }
c. 次を使用します。バイナリ フォーク リンク リストに格納されたバイナリ ツリーを順番に走査するための非再帰アルゴリズム:
void InOrder(pBinTreeNode pbnode) { pBinTreeNode stack[100]; pBinTreeNode p; int top; top=0; p=pbnode; do { while(p!=NULL) { top=top+1; stack[top]=p; //结点p进栈 p=p->llink; //继续搜索结点p的左子树 } if(top!=0) { p=stack[top]; //结点p出栈 top=top-1; printf("%d\n",p->data); //访问结点p p=p->rlink; //继续搜索结点p的右子树 } }while((top!=0)||(p!=NULL)); }
void PostOrderTraverse(BiTree BT) { if(BT) { PostOrderTraverse(BT->lchild); //后序遍历左子树 PostOrderTraverse(BT->rchild); //后序遍历右子树 printf("%c",BT->data); //访问根结点 } }
b.使用栈存储的二叉树后序遍历的非递归算法:
算法思想:首先扫描根结点的所有左结点并入栈,然后出栈一个结点,扫描该结点的右结点并入栈,再扫描该右结点的所有左结点并入栈,当一个结点的左、右子树均被访问后再访问该结点。因为在递归算法中,左子树和右子树都进行了返回,因此为了区分这两种情况,还需要设置一个标识栈tag,当tag的栈顶元素为0时表示从左子树返回,为1表示从右子树返回。
(1)当树为空时,将指针p指向根结点,p为当前结点指针。
(2)将p压入栈S中,0压入栈tag中,并令p指向其左孩子。
(3)重复执行步骤(2),直到p为空。
(4)如果tag栈中的栈顶元素为1,跳至步骤(6)。
(5)如果tag栈中的栈顶元素为0,跳至步骤(7)。
(6)将栈S的栈顶元素弹出,并访问此结点,跳至步骤(8)。
(7)将p指向栈S的栈顶元素的右孩子。
(8)重复执行步骤(2)~(7),直到p为空并且栈S也为空。
(9)遍历结束。
使用栈的后序遍历非递归算法:
void PostOrderNoRec(BiTree BT) { stack S; stack tag; BiTree p=BT->root; while((NULL!=p)||!StackEmpty(S)) { while(NULL!=p) { Push(S,p); Push(tag,0); p=p->lchild; } if(!StackEmpty(S)) { if(Pop(tag)==1) { p=Top(S); Pop(S); printf("%c",p->data); Pop(tag); //栈tag要与栈S同步 } else { p=Top(S); if(!StackEmpty(S)) { p=p->rchild; Pop(tag); Push(tag,1); } } } } }
c.使用二叉链表存储的二叉树后序遍历非递归算法:
void PosOrder(pBinTreeNode pbnode) { pBinTreeNode stack[100]; //结点的指针栈 int count[100]; //记录结点进栈次数的数组 pBinTreeNode p; int top; top=0; p=pbnode; do { while(p!=NULL) { top=top+1; stack[top]=p; //结点p首次进栈 count[top]=0; p=p->llink; //继续搜索结点p的左子树 } p=stack[top]; //结点p出栈 top=top-1; if(count[top+1]==0) { top=top+1; stack[top]=p; //结点p首次进栈 count[top]=1; p=p->rlink; //继续搜索结点p的右子树 } else { printf("%d\n",p->data); //访问结点p p=NULL; } }while((top>0)); }
typedef struct node { DataType data; struct node *lchild, *rchild; //左、右孩子指针 int ltag, rtag; //左、右线索 }TBinTNode; //结点类型 typedef TBinTNode *TBinTree;
(1)中序线索化二叉树的算法:
void InOrderThreading(TBinTree p) { if(p) { InOrderThreading(p->lchild); //左子树线索化 if(p->lchild) p->ltag=0; else p->ltag=1; if(p->rchild) p->rtag=0; else p->rtag=1; if(*(pre)) //若*p的前驱*pre存在 { if(pre->rtag==1) pre->rchild=p; if(p->ltag==1) p->lchild=pre; } pre=p; //另pre是下一访问结点的中序前驱 InOrderThreading(p->rchild); //右子树线索化 } }
(2)在中序线索化二叉树下,结点p的后继结点有以下两种情况:
①结点p的右子树为空,那么p的右孩子指针域为右线索,直接指向结点p的后继结点。TBinTNode *InOrderSuc(BiThrTree p) { TBinTNode *q; if(p->rtag==1) //第①情况 return p->rchild; else //第②情况 { q=p->rchild; while(q->ltag==0) q=q->lchild; return q; } }
中序线索化二叉树求前驱结点的算法:
TBinTNode *InOrderPre(BiThrTree p) { TBinTNode *q; if(p->ltag==1) return p->lchild; else { q=p->lchild; //从*p的左孩子开始查找 while(q->rtag==0) q=q->rchild; return q; } }
(3)遍历中序线索化二叉树的算法
void TraversInOrderThrTree(BiThrTree p) { if(p) { while(p->ltag==0) p=p->lchild; while(p) { printf("%c",p->data); p=InOrderSuc(p); } } }
一般的な問題に関連する技術的な記事については、FAQ 列にアクセスして学習してください。
以上がバイナリ ツリー トラバーサル アルゴリズムの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。