ホームページ >よくある問題 >データ分析の一般的な方法

データ分析の一般的な方法

(*-*)浩
(*-*)浩オリジナル
2019-06-03 13:18:5836988ブラウズ

データ分析とは、ビジネス背景に基づいてデータを解釈し、隠されたデータの背後にある情報を洗練して要約し、価値のあるコンテンツを発見することです。なぜなら、このプロセスではデータは客観的であり、人々は主観的なものだからです。同じデータから異なる人が導き出した結論は、異なる場合やまったく逆の場合もありますが、結論自体が正しいか間違っているかはありません。そのため、客観的なデータと主観的な人々のギャップを埋めるために、何らかの科学的分析手法が必要です。より良く、より包括的に、より速く提供されます。

データ分析の一般的な方法

#一般的に使用されるデータ分析方法は何ですか?

トレンド分析

大量のデータがあり、データからデータ情報をより迅速かつ便利に発見したい場合は、グラフィックの力、いわゆるグラフィックの力は、EXCEl またはその他の描画ツールの助けを借りて描画することです。

トレンド分析は通常、クリック率、GMV、アクティブ ユーザー数などの主要な指標を長期的に追跡するために使用されます。一般的には単純なデータ傾向図を作成しますが、データ傾向図を作成するだけでは分析とは言えず、上記のようにデータの傾向にどのような変化があるのか​​、周期性はあるのか、変曲点はあるのか、などを分析する必要があります。そして、それが内部的な理由であるか外部的な理由であるかに関係なく、その背後にある理由を分析する必要があります。傾向分析からの最良の出力は比率です。前月比、前年比、固定ベースの比率があります。たとえば、2017 年 4 月の GDP が 3 月と比較してどれだけ増加したか、これは前月比であり、前月比は最近の変化傾向を反映していますが、季節的な影響もあります。季節の影響を排除するため、前年比の計算を導入しており、例えば、2016年4月と比較した2017年4月のGDP成長率が前年比成長率となります。固定基準比率の方が分かりやすいのですが、一定の基準点を固定するという意味で、例えば2017年1月のデータを基準点として、2017年5月のデータと2017年5月のデータを比較したものが固定基準比率です。 2017 年 1 月。

比較分析

水平比較:水平比較とは、自分と比較することです。目標を達成したかどうかを回答するには、最も一般的なデータ指標を目標値と比較する必要があります。また、先月と比較して、北部地域でどれだけ成長したかを回答する必要があります。

垂直比較:簡単に言うと他人と比較することです。市場における当社のシェアと地位に関する質問に答えるには、競合他社と比較する必要があります。

多くの人は、比較分析というととても簡単そうに聞こえるかもしれません。例をあげますと、ECのチェックインページがあって、昨日のPVが5000でした。このようなデータを聞いてどう思いますか?

何も感じません。このチェックイン ページの平均 PV が 10,000 であれば、昨日大きな問題があったことを意味します。チェックイン ページの平均 PV が 2,000 であれば、それを意味します昨日はジャンプがありました。データは比較のみを目的としています。意味を生み出すことができます。

象限分析

異なるデータに基づいて、各比較対象を 4 つの象限に分割します。 IQとEQを分けると2次元と4象限に分けることができ、人にはそれぞれ自分の象限があります。一般的に、IQは人間の下限を保証し、EQは人間の上限を高めます。

以前実際の業務で使用した象限分析手法の一例。一般に、P2P 製品の登録ユーザーはサードパーティ チャネルに引き寄せられますが、トラフィック ソースの質と量が 4 つの象限に分割できる場合、一定の時点を選択して各チャネルのトラフィックの費用対効果を比較します。標準として総保持量で測定できます。高品質・大量チャネルを維持し、高品質・少量チャネルの導入量を拡大し、低品質・少量を克服し、低品質・大量の配送戦略と要件を試すこのような象限分析を使用すると、比較分析を行うことができ、非常に直観的かつ迅速に結果が得られます。

クロス分析

比較分析には、水平比較と垂直比較の両方が含まれます。水平方向と垂直方向の両方を比較したい場合は、クロス分析方法があります。クロス分析手法とは、多次元のデータを横断的に提示し、多角的に組み合わせて分析する手法です。

アプリデータを分析する場合、通常は iOS と Android に分けられます。

クロス分析の主な機能は、複数のディメンションからデータをセグメント化し、最も関連性の高いディメンションを見つけて、データ変化の理由を調査することです。

一般的なディメンションは次のとおりです:

タイムシェアリング: 異なる期間でデータに変更があるかどうか。

サブチャネル: さまざまなトラフィック ソースからのデータに変更があるかどうか。

ユーザー分類: 新規登録ユーザーと古いユーザーの違い、および上位ユーザーと下位ユーザーの違いはありますか。

地域別: さまざまな地域でデータに変更があるかどうか。

クロス分析法は、粗いものから細かいものへのプロセスであり、セグメンテーション分析法とも呼ばれます。

概要:

傾向、比較、象限、交差には、データ分析の最も基本的な部分が含まれています。データの検証でもデータ分析でも、傾向の発見、比較、象限の分割、細分化のいずれにおいても、データのみが本来の役割を果たすことができます。

以上がデータ分析の一般的な方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明:
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。