この記事は、Fpm の起動メカニズムとプロセス (コード付き) の詳細な分析を提供します。一定の参考価値があります。必要な友人は参照できます。お役に立てれば幸いです。
FPM (FastCGI Process Manager) は、PHP FastCGI オペレーティング モードのプロセス マネージャーです。その定義から、FPM の中核機能はプロセス管理であることがわかります。では、どのようなプロセスを管理するために使用されるのでしょうか?この問題は FastCGI から始める必要があります。
FastCGI は、Web サーバー (Nginx、Apache など) とハンドラー間の通信プロトコルです。Http に似たアプリケーション層の通信プロトコルです。注: これは単なるプロトコルです。
以前に繰り返し強調したように、PHP は単なるスクリプト パーサーであり、通常の関数として理解でき、入力は PHP スクリプトです。出力は実行結果です。シェルの代わりに PHP を使用してコマンド ラインでファイルを実行したい場合は、PHP パーサーを組み込むプログラムを作成できます。これが cli モードです。このモードでは、PHP は次のようになります。普通のコマンドツール。そこで私たちは、PHP に http リクエストを処理させることができるだろうかと考えました。これにはネットワーク処理が関係し、PHP はリクエストを受信し、プロトコルを解析して、リクエストを処理して返す必要があります。ネットワーク アプリケーションのシナリオでは、PHP は Golang のような http ネットワーク ライブラリを実装しません。代わりに、FastCGI プロトコルを実装し、Web サーバーと連携して http 処理を実装します。Web サーバーは http リクエストを処理し、解析された結果を渡します。 FastCGI を介してプロトコルがハンドラーに転送され、ハンドラーが処理を完了すると結果が Web サーバーに返され、Web サーバーは次の図に示すように結果をユーザーに返します。
PHP は FastCGI プロトコルの分析を実装しますが、特にネットワーク処理を実装しません。一般的な処理モデルは次のとおりです: マルチプロセス、マルチスレッド。マルチプロセス モデルは通常、メイン プロセスのみを意味します。子プロセスの管理を担当し、基本的なネットワーク イベントは nginx や fpm などの各サブプロセスによって処理されます。別のマルチスレッド モデルは、スレッドが細分化されていることを除いて、マルチプロセスに似ています。メイン スレッドは通常、監視とMemcached はリクエストを受信し、処理のためにサブスレッドに渡します。このモードの一部ではマルチプロセス モードも採用されています: メインスレッドはサブスレッドの管理のみを担当し、ネットワーク イベントは処理しません。 -thread リクエストをリッスン、受信、および処理します。Memcached は、UDP プロトコルを使用するときにこのモードを使用します。
1.3.2 基本的な実装
要約すると、fpm の実装は、マスター プロセスを作成し、マスター プロセス内でソケットを作成および監視し、次に複数のサブプロセスをフォークアウトし、これらのそれぞれをフォークすることです。サブプロセスはリクエストを受け付けます サブプロセスの処理は非常に単純です 起動後受け付けでブロックします リクエストが到着するとリクエストデータの読み込みを開始します 読み込み完了後処理を開始してリターンしますこの期間は、他のリクエストを受信しません。つまり、fpm のサブプロセスは、一度に 1 つのリクエストのみに応答できます。次のリクエストは、リクエストが処理された後にのみ受け入れられます。これは、イベントとは大きく異なります。 -driven nginx. nginx のサブプロセスは、epoll を通じてソケットを管理します. リクエスト データが送信されていない場合、次のリクエストが処理されます、つまり、プロセスは複数のリクエストを同時に接続します。ノンブロッキング モデルであり、アクティブなソケットのみを処理します。
fpm マスター プロセスとワーカー プロセスの間には直接通信はありません。マスターは、ワーカー プロセスの現在のステータス、処理されたリクエストの数、マスタープロセスがワーカープロセスを強制終了したい場合など。 ワーカープロセスが使用中の場合、シグナルを送信することでワーカープロセスに通知されます。
fpm は複数のポートを同時に監視でき、nginx のサーバーの概念と同様に、各ポートがワーカー プールに対応し、各プールが複数のワーカー プロセスに対応します。
php-fpm.conf の [プール名] を通じてワーカー プールを宣言します:
[web1]
listen = 127.0.0.1:9000
...
[web2]
listen = 127.0.0.1:9001
...
fpm 起動後のプロセスを確認します: ps -aux|grep fpm
root 27155 0.0 0.1 144704 2720 ? Ss 15:16 0:00 php-fpm: マスタープロセス (/usr/local/php7/etc/php-fpm.conf)
nobody 27156 0.0 0.1 144676 2416 ? S 15:16 0:00 php-fpm : プール web1
誰も 27157 0.0 0.1 144676 2416 ? S 15:16 0:00 php-fpm: プール web1
誰も 27159 0.0 0.1 144680 2376 ? S 15:16 0:00 php-fpm: プール web2
nobody 27160 0.0 0.1 144680 2376 ? S 15:16 0:00 php-fpm: pool web2
特定の実装では、ワーカー プールは fpm_worker_pool_s 構造体で表されます。複数のワーカー プールは単一リンク リストを形成します:
struct fpm_worker_pool_s { struct fpm_worker_pool_s next; //指向下一个worker pool struct fpm_worker_pool_config_s config; //conf配置:pm、max_children、start_servers... int listening_socket; //监听的套接字 ... //以下这个值用于master定时检查、记录worker数 struct fpm_child_s *children; //当前pool的worker链表 int running_children; //当前pool的worker运行总数 int idle_spawn_rate; int warn_max_children; struct fpm_scoreboard_s *scoreboard; //记录worker的运行信息,比如空闲、忙碌worker数 ... }
1.3.3 FPM の初期化
main() 関数から始めて、fpm の起動プロセスを見てみましょう:
//sapi/fpm/fpm/fpm_main.c int main(int argc, char *argv[]) { ... //注册SAPI:将全局变量sapi_module设置为cgi_sapi_module sapi_startup(&cgi_sapi_module); ... //执行php_module_starup() if (cgi_sapi_module.startup(&cgi_sapi_module) == FAILURE) { return FPM_EXIT_SOFTWARE; } ... //初始化 if(0 > fpm_init(...)){ ... } ... fpm_is_running = 1; fcgi_fd = fpm_run(&max_requests);//后面都是worker进程的操作,master进程不会走到下面 parent = 0; ... }
fpm_init() には主に次の主要な操作があります。
(1)fpm_conf_init_main():
php-fpm.conf 構成ファイルを解析し、ワーカー プールのメモリ構造を割り当て、グローバル変数 fpm_worker_all_pools に保存します。各ワーカー プールの構成はfpm_worker_pool_s->config に解析されます。
(2)fpm_scoreboard_init_main(): ワーカー プロセスの実行情報を記録するための共有メモリを割り当てます。これは、ワーカー プール内のワーカー プロセスの最大数に応じて割り当てられます。各ワーカー プールには、fpm_scoreboard_s 構造体が割り当てられます。それぞれに対応します。プール配下のファイル ワーカープロセスは fpm_scoreboard_proc_s 構造体を割り当てます 各構造体の対応関係は以下の通りです。
(3)fpm_signals_init_main():
static int sp[2]; int fpm_signals_init_main() { struct sigaction act; //创建一个全双工管道 if (0 > socketpair(AF_UNIX, SOCK_STREAM, 0, sp)) { return -1; } //注册信号处理handler act.sa_handler = sig_handler; sigfillset(&act.sa_mask); if (0 > sigaction(SIGTERM, &act, 0) || 0 > sigaction(SIGINT, &act, 0) || 0 > sigaction(SIGUSR1, &act, 0) || 0 > sigaction(SIGUSR2, &act, 0) || 0 > sigaction(SIGCHLD, &act, 0) || 0 > sigaction(SIGQUIT, &act, 0)) { return -1; } return 0; }
这里会通过socketpair()创建一个管道,这个管道并不是用于master与worker进程通信的,它只在master进程中使用,具体用途在稍后介绍event事件处理时再作说明。另外设置master的信号处理handler,当master收到SIGTERM、SIGINT、SIGUSR1、SIGUSR2、SIGCHLD、SIGQUIT这些信号时将调用sig_handler()处理:
static void sig_handler(int signo) { static const char sig_chars[NSIG + 1] = { [SIGTERM] = 'T', [SIGINT] = 'I', [SIGUSR1] = '1', [SIGUSR2] = '2', [SIGQUIT] = 'Q', [SIGCHLD] = 'C' }; char s; ... s = sig_chars[signo]; //将信号通知写入管道sp[1]端 write(sp[1], &s, sizeof(s)); ... }
(4)fpm_sockets_init_main()
创建每个worker pool的socket套接字。
(5)fpm_event_init_main():
启动master的事件管理,fpm实现了一个事件管理器用于管理IO、定时事件,其中IO事件通过kqueue、epoll、poll、select等管理,定时事件就是定时器,一定时间后触发某个事件。
在fpm_init()初始化完成后接下来就是最关键的fpm_run()操作了,此环节将fork子进程,启动进程管理器,另外master进程将不会再返回,只有各worker进程会返回,也就是说fpm_run()之后的操作均是worker进程的。
int fpm_run(int max_requests) { struct fpm_worker_pool_s wp; for (wp = fpm_worker_all_pools; wp; wp = wp->next) { //调用fpm_children_make() fork子进程 is_parent = fpm_children_create_initial(wp); if (!is_parent) { goto run_child; } } //master进程将进入event循环,不再往下走 fpm_event_loop(0); run_child: //只有worker进程会到这里 *max_requests = fpm_globals.max_requests; return fpm_globals.listening_socket; //返回监听的套接字 }
在fork后worker进程返回了监听的套接字继续main()后面的处理,而master将永远阻塞在fpm_event_loop(),接下来分别介绍master、worker进程的后续操作。
1.3.4 请求处理
fpm_run()执行后将fork出worker进程,worker进程返回main()中继续向下执行,后面的流程就是worker进程不断accept请求,然后执行PHP脚本并返回。整体流程如下:
(1)等待请求: worker进程阻塞在fcgi_accept_request()等待请求;
(2)解析请求: fastcgi请求到达后被worker接收,然后开始接收并解析请求数据,直到request数据完全到达;
(3)请求初始化: 执行php_request_startup(),此阶段会调用每个扩展的:PHP_RINIT_FUNCTION();
(4)编译、执行: 由php_execute_script()完成PHP脚本的编译、执行;
(5)关闭请求: 请求完成后执行php_request_shutdown(),此阶段会调用每个扩展的:PHP_RSHUTDOWN_FUNCTION(),然后进入步骤(1)等待下一个请求。
int main(int argc, char *argv[]) { ... fcgi_fd = fpm_run(&max_requests); parent = 0; //初始化fastcgi请求 request = fpm_init_request(fcgi_fd); //worker进程将阻塞在这,等待请求 while (EXPECTED(fcgi_accept_request(request) >= 0)) { SG(server_context) = (void *) request; init_request_info(); //请求开始 if (UNEXPECTED(php_request_startup() == FAILURE)) { ... } ... fpm_request_executing(); //编译、执行PHP脚本 php_execute_script(&file_handle); ... //请求结束 php_request_shutdown((void *) 0); ... } ... //worker进程退出 php_module_shutdown(); ... }
worker进程一次请求的处理被划分为5个阶段:
FPM_REQUEST_ACCEPTING: 等待请求阶段
FPM_REQUEST_READING_HEADERS: 读取fastcgi请求header阶段
FPM_REQUEST_INFO: 获取请求信息阶段,此阶段是将请求的method、query stirng、request uri等信息保存到各worker进程的fpm_scoreboard_proc_s结构中,此操作需要加锁,因为master进程也会操作此结构
FPM_REQUEST_EXECUTING: 执行请求阶段
FPM_REQUEST_END: 没有使用
FPM_REQUEST_FINISHED: 请求处理完成
worker处理到各个阶段时将会把当前阶段更新到fpm_scoreboard_proc_s->request_stage,master进程正是通过这个标识判断worker进程是否空闲的。
1.3.5 进程管理
这一节我们来看下master是如何管理worker进程的,首先介绍下三种不同的进程管理方式:
static: 这种方式比较简单,在启动时master按照pm.max_children配置fork出相应数量的worker进程,即worker进程数是固定不变的
dynamic: 动态进程管理,首先在fpm启动时按照pm.start_servers初始化一定数量的worker,运行期间如果master发现空闲worker数低于pm.min_spare_servers配置数(表示请求比较多,worker处理不过来了)则会fork worker进程,但总的worker数不能超过pm.max_children,如果master发现空闲worker数超过了pm.max_spare_servers(表示闲着的worker太多了)则会杀掉一些worker,避免占用过多资源,master通过这4个值来控制worker数
ondemand: 这种方式一般很少用,在启动时不分配worker进程,等到有请求了后再通知master进程fork worker进程,总的worker数不超过pm.max_children,处理完成后worker进程不会立即退出,当空闲时间超过pm.process_idle_timeout后再退出
前面介绍到在fpm_run()master进程将进入fpm_event_loop():
void fpm_event_loop(int err) { //创建一个io read的监听事件,这里监听的就是在fpm_init()阶段中通过socketpair()创建管道sp[0] //当sp[0]可读时将回调fpm_got_signal() fpm_event_set(&signal_fd_event, fpm_signals_get_fd(), FPM_EV_READ, &fpm_got_signal, NULL); fpm_event_add(&signal_fd_event, 0); //如果在php-fpm.conf配置了request_terminate_timeout则启动心跳检查 if (fpm_globals.heartbeat > 0) { fpm_pctl_heartbeat(NULL, 0, NULL); } //定时触发进程管理 fpm_pctl_perform_idle_server_maintenance_heartbeat(NULL, 0, NULL); //进入事件循环,master进程将阻塞在此 while (1) { ... //等待IO事件 ret = module->wait(fpm_event_queue_fd, timeout); ... //检查定时器事件 ... } }
这就是master整体的处理,其进程管理主要依赖注册的几个事件,接下来我们详细分析下这几个事件的功能。
(1)sp[1]管道可读事件:
在fpm_init()阶段master曾创建了一个全双工的管道:sp,然后在这里创建了一个sp[0]可读的事件,当sp[0]可读时将交由fpm_got_signal()处理,向sp[1]写数据时sp[0]才会可读,那么什么时机会向sp[1]写数据呢?前面已经提到了:当master收到注册的那几种信号时会写入sp[1]端,这个时候将触发sp[0]可读事件。
这个事件是master用于处理信号的,我们根据master注册的信号逐个看下不同用途:
SIGINT/SIGTERM/SIGQUIT: 退出fpm,在master收到退出信号后将向所有的worker进程发送退出信号,然后master退出
SIGUSR1: 重新加载日志文件,生产环境中通常会对日志进行切割,切割后会生成一个新的日志文件,如果fpm不重新加载将无法继续写入日志,这个时候就需要向master发送一个USR1的信号
SIGUSR2: 重启fpm,首先master也是会向所有的worker进程发送退出信号,然后master会调用execvp()重新启动fpm,最后旧的master退出
SIGCHLD: 这个信号是子进程退出时操作系统发送给父进程的,子进程退出时,内核将子进程置为僵尸状态,这个进程称为僵尸进程,它只保留最小的一些内核数据结构,以便父进程查询子进程的退出状态,只有当父进程调用wait或者waitpid函数查询子进程退出状态后子进程才告终止,fpm中当worker进程因为异常原因(比如coredump了)退出而非master主动杀掉时master将受到此信号,这个时候父进程将调用waitpid()查下子进程的退出,然后检查下是不是需要重新fork新的worker
具体处理逻辑在fpm_got_signal()函数中,这里不再罗列。
(2)fpm_pctl_perform_idle_server_maintenance_heartbeat():
这是进程管理实现的主要事件,master启动了一个定时器,每隔1s触发一次,主要用于dynamic、ondemand模式下的worker管理,master会定时检查各worker pool的worker进程数,通过此定时器实现worker数量的控制,处理逻辑如下:
static void fpm_pctl_perform_idle_server_maintenance(struct timeval now) { for (wp = fpm_worker_all_pools; wp; wp = wp->next) { struct fpm_child_s last_idle_child = NULL; //空闲时间最久的worker int idle = 0; //空闲worker数 int active = 0; //忙碌worker数 for (child = wp->children; child; child = child->next) { //根据worker进程的fpm_scoreboard_proc_s->request_stage判断 if (fpm_request_is_idle(child)) { //找空闲时间最久的worker ... idle++; }else{ active++; } } ... //ondemand模式 if (wp->config->pm == PM_STYLE_ONDEMAND) { if (!last_idle_child) continue; fpm_request_last_activity(last_idle_child, &last); fpm_clock_get(&now); if (last.tv_sec < now.tv_sec - wp->config->pm_process_idle_timeout) { //如果空闲时间最长的worker空闲时间超过了process_idle_timeout则杀掉该worker last_idle_child->idle_kill = 1; fpm_pctl_kill(last_idle_child->pid, FPM_PCTL_QUIT); } continue; } //dynamic if (wp->config->pm != PM_STYLE_DYNAMIC) continue; if (idle > wp->config->pm_max_spare_servers && last_idle_child) { //空闲worker太多了,杀掉 last_idle_child->idle_kill = 1; fpm_pctl_kill(last_idle_child->pid, FPM_PCTL_QUIT); wp->idle_spawn_rate = 1; continue; } if (idle < wp->config->pm_min_spare_servers) { //空闲worker太少了,如果总worker数未达到max数则fork ... } } }
(3)fpm_pctl_heartbeat():
这个事件是用于限制worker处理单个请求最大耗时的,php-fpm.conf中有一个request_terminate_timeout的配置项,如果worker处理一个请求的总时长超过了这个值那么master将会向此worker进程发送kill -TERM信号杀掉worker进程,此配置单位为秒,默认值为0表示关闭此机制,另外fpm打印的slow log也是在这里完成的。
static void fpm_pctl_check_request_timeout(struct timeval now) { struct fpm_worker_pool_s wp; for (wp = fpm_worker_all_pools; wp; wp = wp->next) { int terminate_timeout = wp->config->request_terminate_timeout; int slowlog_timeout = wp->config->request_slowlog_timeout; struct fpm_child_s *child; if (terminate_timeout || slowlog_timeout) { for (child = wp->children; child; child = child->next) { //检查当前当前worker处理的请求是否超时 fpm_request_check_timed_out(child, now, terminate_timeout, slowlog_timeout); } } } }
除了上面这几个事件外还有一个没有提到,那就是ondemand模式下master监听的新请求到达的事件,因为ondemand模式下fpm启动时是不会预创建worker的,有请求时才会生成子进程,所以请求到达时需要通知master进程,这个事件是在fpm_children_create_initial()时注册的,事件处理函数为fpm_pctl_on_socket_accept(),具体逻辑这里不再展开,比较容易理解。
到目前为止我们已经把fpm的核心实现介绍完了,事实上fpm的实现还是比较简单的。
以上がFpmの起動メカニズムとプロセスの詳細な分析(コード付き)の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

PHPは動的なWebサイトを構築するために使用され、そのコア関数には次のものが含まれます。1。データベースに接続することにより、動的コンテンツを生成し、リアルタイムでWebページを生成します。 2。ユーザーのインタラクションを処理し、提出をフォームし、入力を確認し、操作に応答します。 3.セッションとユーザー認証を管理して、パーソナライズされたエクスペリエンスを提供します。 4.パフォーマンスを最適化し、ベストプラクティスに従って、ウェブサイトの効率とセキュリティを改善します。

PHPはMySQLIおよびPDO拡張機能を使用して、データベース操作とサーバー側のロジック処理で対話し、セッション管理などの関数を介してサーバー側のロジックを処理します。 1)MySQLIまたはPDOを使用してデータベースに接続し、SQLクエリを実行します。 2)セッション管理およびその他の機能を通じて、HTTPリクエストとユーザーステータスを処理します。 3)トランザクションを使用して、データベース操作の原子性を確保します。 4)SQLインジェクションを防ぎ、例外処理とデバッグの閉鎖接続を使用します。 5)インデックスとキャッシュを通じてパフォーマンスを最適化し、読みやすいコードを書き、エラー処理を実行します。

PHPで前処理ステートメントとPDOを使用すると、SQL注入攻撃を効果的に防ぐことができます。 1)PDOを使用してデータベースに接続し、エラーモードを設定します。 2)準備方法を使用して前処理ステートメントを作成し、プレースホルダーを使用してデータを渡し、メソッドを実行します。 3)結果のクエリを処理し、コードのセキュリティとパフォーマンスを確保します。

PHPとPythonには独自の利点と短所があり、選択はプロジェクトのニーズと個人的な好みに依存します。 1.PHPは、大規模なWebアプリケーションの迅速な開発とメンテナンスに適しています。 2。Pythonは、データサイエンスと機械学習の分野を支配しています。

PHPは、電子商取引、コンテンツ管理システム、API開発で広く使用されています。 1)eコマース:ショッピングカート機能と支払い処理に使用。 2)コンテンツ管理システム:動的コンテンツの生成とユーザー管理に使用されます。 3)API開発:RESTFUL API開発とAPIセキュリティに使用されます。パフォーマンスの最適化とベストプラクティスを通じて、PHPアプリケーションの効率と保守性が向上します。

PHPにより、インタラクティブなWebコンテンツを簡単に作成できます。 1)HTMLを埋め込んでコンテンツを動的に生成し、ユーザー入力またはデータベースデータに基づいてリアルタイムで表示します。 2)プロセスフォームの提出と動的出力を生成して、XSSを防ぐためにHTMLSPECIALCHARSを使用していることを確認します。 3)MySQLを使用してユーザー登録システムを作成し、Password_HashおよびPreprocessingステートメントを使用してセキュリティを強化します。これらの手法を習得すると、Web開発の効率が向上します。

PHPとPythonにはそれぞれ独自の利点があり、プロジェクトの要件に従って選択します。 1.PHPは、特にWebサイトの迅速な開発とメンテナンスに適しています。 2。Pythonは、データサイエンス、機械学習、人工知能に適しており、簡潔な構文を備えており、初心者に適しています。

PHPは依然として動的であり、現代のプログラミングの分野で重要な位置を占めています。 1)PHPのシンプルさと強力なコミュニティサポートにより、Web開発で広く使用されています。 2)その柔軟性と安定性により、Webフォーム、データベース操作、ファイル処理の処理において顕著になります。 3)PHPは、初心者や経験豊富な開発者に適した、常に進化し、最適化しています。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

PhpStorm Mac バージョン
最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

WebStorm Mac版
便利なJavaScript開発ツール

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

Dreamweaver Mac版
ビジュアル Web 開発ツール
