この記事の内容は、PHP での小さいメモリの仕様の計算 (コード例) に関するもので、一定の参考値があります。必要な友人が参考にすることができます。お役に立てれば幸いです。
小規模なメモリ割り当ての計算 bin_num
PHP ソース コードには、特に Zend/zend_alloc.c の zend_mm_small_size_to_bin 関数内に、小規模なメモリ仕様の計算があります。その目的は、サイズ、対応する仕様を計算します。コードを参照してください:
if (size > 3; } else { t1 = size - 1; t2 = zend_mm_small_size_to_bit(t1) - 3; t1 = t1 >> t2; t2 = t2 - 3; t2 = t2 <p> このコードは、議論のために 2 つの状況に分割されていることがわかります: </p>
-
1. サイズが以下の場合64;
2. サイズが 64 より大きい場合;
これら 2 つの状況を以下で詳しく分析してみましょう。
サイズが 64 以下の場合については、
「
ZEND_MM_BINS_INFO
」を参照してください。このマクロは、サイズが 64 以下であることを認識します。 64、これは 8 ずつ増加する算術シーケンスであるため、size を 8 で割った値を使用します (ソース コードでは 3 ビット右シフト)size >> 3
-
ただし、サイズは 8、16 などに等しいことを考慮する必要があるため、
(size - 1) >> 3
次に、 0の場合を考慮する必要があるので、ソースコードの
-1
の処理は!!size
となり、size が 0 の場合!!0 = 0## #。したがって、サイズが 0 の場合、
-1は
-0に変換され、最終的にソース コードには式
(size - !!size) >> が存在します。 3
t1 = size - 1;
t2 = zend_mm_small_size_to_bit(t1) - 3;
t1 = t1 >> t2;
t2 = t2 - 3;
t2 = t2
最初の混乱
- 最初に見たときこのコードは混乱しやすいですが、これらの t1 と t2 は何ですか?
- でも、恐れることはありません。段階的に分析してみましょう ##ステップ分析
/* num, size, count, pages */ #define ZEND_MM_BINS_INFO(_, x, y) \ _( 0, 8, 512, 1, x, y) \ _( 1, 16, 256, 1, x, y) \ _( 2, 24, 170, 1, x, y) \ _( 3, 32, 128, 1, x, y) \ _( 4, 40, 102, 1, x, y) \ _( 5, 48, 85, 1, x, y) \ _( 6, 56, 73, 1, x, y) \ _( 7, 64, 64, 1, x, y) \ _( 8, 80, 51, 1, x, y) \ _( 9, 96, 42, 1, x, y) \ _(10, 112, 36, 1, x, y) \ _(11, 128, 32, 1, x, y) \ _(12, 160, 25, 1, x, y) \ _(13, 192, 21, 1, x, y) \ _(14, 224, 18, 1, x, y) \ _(15, 256, 16, 1, x, y) \ _(16, 320, 64, 5, x, y) \ _(17, 384, 32, 3, x, y) \ _(18, 448, 9, 1, x, y) \ _(19, 512, 8, 1, x, y) \ _(20, 640, 32, 5, x, y) \ _(21, 768, 16, 3, x, y) \ _(22, 896, 9, 2, x, y) \ _(23, 1024, 8, 2, x, y) \ _(24, 1280, 16, 5, x, y) \ _(25, 1536, 8, 3, x, y) \ _(26, 1792, 16, 7, x, y) \ _(27, 2048, 8, 4, x, y) \ _(28, 2560, 8, 5, x, y) \ _(29, 3072, 4, 3, x, y) #endif /* ZEND_ALLOC_SIZES_H */
- size = size - 1;
これは境界ケースであり、前のものと同様に、後で現れるサイズは次のようにみなされます。ほぼ 1 つ減少しました
このソース コードを見ないと仮定すると、 - ZEND_MM_BINS_INFO
は## で対応する bin_num を見つける必要があります。
ZEND_MM_BINS_INFO - から学習され、その後、4 がそれぞれグループとして追加されます
2^4, 2^5, 2^6...
- このサイズがどのグループに属しているかを見つけます
- そして、その中のサイズのオフセットは何ですかグループ
- グループの開始位置を計算します
- 問題は上記の 3 つの小さな問題に変換されますので、解いてみましょう1 つずつ
- # サイズがどのグループに属しているかを見つける最も簡単な方法は、サイズを比較することですよね? if...else を使用して 1 つずつ比較することもできますが、明らかに、PHP ソース コードはこのようには機能しません。では、他にどのような選択肢があるでしょうか?
-
64 | 100 0000 80 | 101 0000 96 | 110 0000 112 | 111 0000 128 | 1000 0000 160 | 1010 0000 192 | 1100 0000 224 | 1110 0000 256 | 1 0000 0000 320 | 1 0100 0000 384 | 1 1000 0000 448 | 1 1100 0000 .....
- 上記の 2 進数を見ると、各グループの 2 進数の長さが等しく、次のそれぞれの桁が前のグループより 1 つ多いことがわかります。
- 次に、質問は「2 進数の最上位ビット
- 1
の桁数を見つける」に変換されます。
1 を返すことがわかっている限り、ここでは解析しません。PHP ソース コードの解決策は次のとおりです。ここでは解析しませんが、2 進数の最大桁数
-
#
int n = 16; if (size <code></code># 適用するサイズが 65 であると仮定すると、ここでの n は 7 を返します
#計算グループ内のサイズのオフセット
これは簡単です。サイズから各グループの開始サイズを直接減算し、それを現在のグループで割ります。差 (16、32、64) ...) で十分です。つまり、
- 今前のステップで返された値を見てみましょう。各グループは
なので、そのようなデータを計算する方法を見てみましょう。グループ内のオフセット
-
(size - 2^4 * 4) / 16 = size / 2^4 - 4 (size - 2^5 * 4) / 32 = size / 2^5 - 4 (size - 2^6 * 4) / 64 = szie / 2^6 - 4
から#7、8、9
3 - を引いたものを使用できますか?
4、5、6# を取得します##、どのグループに属しているかという情報に基づいて、現在のグループの差 (16、32、64...) を取得できるようにします。
サイズが 65 の場合、
- #
(64-64) / 2^4 = 0
##<pre class="brush:php;toolbar:false">1 t1 = size - 1;
2 t2 = zend_mm_small_size_to_bit(t1) - 3;
3 t1 = t1 >> t2;
4 t2 = t2 - 3;
5 t2 = t2 </pre>
グループの開始位置を計算します#これで、グループ化が 1 であると仮定して、オフセット情報が得られます。 2, 3
ということは、最上位ビット
1グループ化情報が得られます
グループ分け情報を取得した後、各グループの開始位置をどのようにして知ることができますか。
開始位置は
8 であることがわかります。 , 12, 16...
これは等差数列でもあり、4n 4
ここで検討しているのは size= の例です。 65
计算的偏移量是0
计算的起始位置是
4*1 + 4 = 8
所以当size=65的bin_num就是起始位置加上偏移量
8 + 0 = 8
我们再看一个size=129的例子
二进制中最高位的
1
的位数为8然后用8减去3得到5
(129 - 1 - 32 * 4) / 64 = 0
偏移量是
计算起始位置是
4 * 2 + 4 = 12
两者相加就是
12 + 0 = 0
size=193
二进制中最高位的
1
的位数为8(193 - 1 - 32 * 4) / 64 = 2
偏移量是
计算起始位置是
4 * 2 + 4 = 12
两者相加就是
12 + 2 = 14
size=1793
二进制中最高位的
1
的位数为11(1793 - 1 - 256 * 4) / 256 = 3
偏移量是
计算起始位置是
4 * 5 + 4 = 24
两者相加就是
24 + 3 = 27
代码分析
php实现代码
1 t1 = size - 1; 2 t2 = zend_mm_small_size_to_bit(t1) - 3; 3 t1 = t1 >> t2; 4 t2 = t2 - 3; 5 t2 = t2第一行
t1 = size - 1;
是为了考虑size为64、128...这些边界情况
第二行
t2 = zend_mm_small_size_to_bit(t1) - 3;
这里调用了
zend_mm_small_size_to_bit
这个函数,我们看看这个函数
/* higher set bit number (0->N/A, 1->1, 2->2, 4->3, 8->4, 127->7, 128->8 etc) */ int n = 16; if (size
看注释我们就知道这个函数是用来返回当前size二进制中最高位1的位数,具体的做法呢其实就是二分法
-
我们通过
zend_mm_small_size_to_bit
这个函数获取了size二进制中最高位1的位数,那么这个-3
是什么神奇的操作呢(size - 2^4 * 4) / 16 = size / 2^4 - 4 (size - 2^5 * 4) / 32 = size / 2^5 - 4 (size - 2^6 * 4) / 64 = szie / 2^6 - 4
这里获取二进制的位数是7、8、9...通过
-3
的操作来获取相应的 4、5、6...上问的分析中提到,我们计算size在组内的偏移量的公式
第三行
t1 = t1 >> t2;
把t1右移t2位,这又是什么神奇的操作?
这里我们把最后计算bin_num的数学公式给写出来,它是等于每组的起始位置加上组内的偏移量
binnum = (4n + 4) + (size / 2^n - 4) binnum = 4n + size / 2^n
所以第三行的意思我们就知道了,就是size右移2^n次方为
第四行
t2 = t2 - 3;
这个好理解,可以参照上文得到每组的起始位置的方法
第五行
t2 = t2
我们再看看bin_num的计算公式
binnum = (4n + 4) + (size / 2^n - 4) binnum = 4n + size / 2^n
那么这行就好理解了,就是计算每组的起始位置
4n
对吧,左移两位就是乘以4
第六行
return (int)(t1 + t2);
这行没啥说的,就是返回了一个int类型的bin_num
以上がPHPでの小規模メモリ仕様の計算(コード例)の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

データベースストレージセッションを使用することの主な利点には、持続性、スケーラビリティ、セキュリティが含まれます。 1。永続性:サーバーが再起動しても、セッションデータは変更されないままになります。 2。スケーラビリティ:分散システムに適用され、セッションデータが複数のサーバー間で同期されるようにします。 3。セキュリティ:データベースは、機密情報を保護するための暗号化されたストレージを提供します。

PHPでのカスタムセッション処理の実装は、SessionHandlerInterfaceインターフェイスを実装することで実行できます。具体的な手順には、次のものが含まれます。1)CussentsessionHandlerなどのSessionHandlerInterfaceを実装するクラスの作成。 2)セッションデータのライフサイクルとストレージ方法を定義するためのインターフェイス(オープン、クローズ、読み取り、書き込み、破壊、GCなど)の書き換え方法。 3)PHPスクリプトでカスタムセッションプロセッサを登録し、セッションを開始します。これにより、データをMySQLやRedisなどのメディアに保存して、パフォーマンス、セキュリティ、スケーラビリティを改善できます。

SessionIDは、ユーザーセッションのステータスを追跡するためにWebアプリケーションで使用されるメカニズムです。 1.ユーザーとサーバー間の複数のインタラクション中にユーザーのID情報を維持するために使用されるランダムに生成された文字列です。 2。サーバーは、ユーザーの複数のリクエストでこれらの要求を識別および関連付けるのに役立つCookieまたはURLパラメーターを介してクライアントに生成および送信します。 3.生成は通常、ランダムアルゴリズムを使用して、一意性と予測不可能性を確保します。 4.実際の開発では、Redisなどのメモリ内データベースを使用してセッションデータを保存してパフォーマンスとセキュリティを改善できます。

APIなどのステートレス環境でのセッションの管理は、JWTまたはCookieを使用して達成できます。 1。JWTは、無国籍とスケーラビリティに適していますが、ビッグデータに関してはサイズが大きいです。 2.cookiesはより伝統的で実装が簡単ですが、セキュリティを確保するために慎重に構成する必要があります。

セッション関連のXSS攻撃からアプリケーションを保護するには、次の測定が必要です。1。セッションCookieを保護するためにHTTPonlyとセキュアフラグを設定します。 2。すべてのユーザー入力のエクスポートコード。 3.コンテンツセキュリティポリシー(CSP)を実装して、スクリプトソースを制限します。これらのポリシーを通じて、セッション関連のXSS攻撃を効果的に保護し、ユーザーデータを確保できます。

PHPセッションのパフォーマンスを最適化する方法は次のとおりです。1。遅延セッション開始、2。データベースを使用してセッションを保存します。これらの戦略は、高い並行性環境でのアプリケーションの効率を大幅に改善できます。

thesession.gc_maxlifettinginttinginphpdethinesthelifsessessiondata、setinseconds.1)it'sconfiguredinphp.iniorviaini_set()。 2)AbalanceSneededToAvoidPerformanceIssues andunexpectedLogouts.3)php'sgarbagecollectionisisprobabilistic、影響を受けたBygc_probabi

PHPでは、session_name()関数を使用してセッション名を構成できます。特定の手順は次のとおりです。1。session_name()関数を使用して、session_name( "my_session")などのセッション名を設定します。 2。セッション名を設定した後、session_start()を呼び出してセッションを開始します。セッション名の構成は、複数のアプリケーション間のセッションデータの競合を回避し、セキュリティを強化することができますが、セッション名の一意性、セキュリティ、長さ、設定タイミングに注意してください。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

Dreamweaver Mac版
ビジュアル Web 開発ツール

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

ホットトピック









