この記事の内容は、PHP での小さいメモリの仕様の計算 (コード例) に関するもので、一定の参考値があります。必要な友人が参考にすることができます。お役に立てれば幸いです。
小規模なメモリ割り当ての計算 bin_num
PHP ソース コードには、特に Zend/zend_alloc.c の zend_mm_small_size_to_bin 関数内に、小規模なメモリ仕様の計算があります。その目的は、サイズ、対応する仕様を計算します。コードを参照してください:
if (size <= 64) { /* we need to support size == 0 ... */ return (size - !!size) >> 3; } else { t1 = size - 1; t2 = zend_mm_small_size_to_bit(t1) - 3; t1 = t1 >> t2; t2 = t2 - 3; t2 = t2 << 2; return (int)(t1 + t2); }
このコードは、議論のために 2 つの状況に分割されていることがわかります:
1. サイズが以下の場合64;
2. サイズが 64 より大きい場合;
これら 2 つの状況を以下で詳しく分析してみましょう。
「ZEND_MM_BINS_INFO
」を参照してください。このマクロは、サイズが 64 以下であることを認識します。 64、これは 8 ずつ増加する算術シーケンスであるため、size を 8 で割った値を使用します (ソース コードでは 3 ビット右シフト) size >> 3</pre>
<li> <p>ただし、サイズは 8、16 などに等しいことを考慮する必要があるため、<code>(size - 1) >> 3
次に、 0の場合を考慮する必要があるので、ソースコードの -1
の処理は !!size
となり、size が 0 の場合 !!0 = 0## #。したがって、サイズが 0 の場合、
-1 は
-0 に変換され、最終的にソース コードには式
(size - !!size) >> が存在します。 3
t1 = size - 1; t2 = zend_mm_small_size_to_bit(t1) - 3; t1 = t1 >> t2; t2 = t2 - 3; t2 = t2 << 2; return (int)(t1 + t2);
/* num, size, count, pages */ #define ZEND_MM_BINS_INFO(_, x, y) \ _( 0, 8, 512, 1, x, y) \ _( 1, 16, 256, 1, x, y) \ _( 2, 24, 170, 1, x, y) \ _( 3, 32, 128, 1, x, y) \ _( 4, 40, 102, 1, x, y) \ _( 5, 48, 85, 1, x, y) \ _( 6, 56, 73, 1, x, y) \ _( 7, 64, 64, 1, x, y) \ _( 8, 80, 51, 1, x, y) \ _( 9, 96, 42, 1, x, y) \ _(10, 112, 36, 1, x, y) \ _(11, 128, 32, 1, x, y) \ _(12, 160, 25, 1, x, y) \ _(13, 192, 21, 1, x, y) \ _(14, 224, 18, 1, x, y) \ _(15, 256, 16, 1, x, y) \ _(16, 320, 64, 5, x, y) \ _(17, 384, 32, 3, x, y) \ _(18, 448, 9, 1, x, y) \ _(19, 512, 8, 1, x, y) \ _(20, 640, 32, 5, x, y) \ _(21, 768, 16, 3, x, y) \ _(22, 896, 9, 2, x, y) \ _(23, 1024, 8, 2, x, y) \ _(24, 1280, 16, 5, x, y) \ _(25, 1536, 8, 3, x, y) \ _(26, 1792, 16, 7, x, y) \ _(27, 2048, 8, 4, x, y) \ _(28, 2560, 8, 5, x, y) \ _(29, 3072, 4, 3, x, y) #endif /* ZEND_ALLOC_SIZES_H */
これは境界ケースであり、前のものと同様に、後で現れるサイズは次のようにみなされます。ほぼ 1 つ減少しました
## で対応する bin_num を見つける必要があります。
2^4, 2^5, 2^6...
64 | 100 0000 80 | 101 0000 96 | 110 0000 112 | 111 0000 128 | 1000 0000 160 | 1010 0000 192 | 1100 0000 224 | 1110 0000 256 | 1 0000 0000 320 | 1 0100 0000 384 | 1 1000 0000 448 | 1 1100 0000 .....
の桁数を見つける」に変換されます。 PHP ソース コードの解決策は次のとおりです。ここでは解析しませんが、2 進数の最大桁数
#
int n = 16; if (size <= 0x00ff) {n -= 8; size = size << 8;} if (size <= 0x0fff) {n -= 4; size = size << 4;} if (size <= 0x3fff) {n -= 2; size = size << 2;} if (size <= 0x7fff) {n -= 1;} return n;
# 適用するサイズが 65 であると仮定すると、ここでの n は 7 を返します#計算グループ内のサイズのオフセット
(size - 2^4 * 4) / 16 = size / 2^4 - 4 (size - 2^5 * 4) / 32 = size / 2^5 - 4 (size - 2^6 * 4) / 64 = szie / 2^6 - 4
#7、8、9
4、5、6# を取得します##、どのグループに属しているかという情報に基づいて、現在のグループの差 (16、32、64...) を取得できるようにします。
(64-64) / 2^4 = 0
##<pre class="brush:php;toolbar:false">1 t1 = size - 1;
2 t2 = zend_mm_small_size_to_bit(t1) - 3;
3 t1 = t1 >> t2;
4 t2 = t2 - 3;
5 t2 = t2 << 2;
6 return (int)(t1 + t2);</pre>
グループの開始位置を計算します#これで、グループ化が 1 であると仮定して、オフセット情報が得られます。 2, 3
ということは、最上位ビット
1グループ分け情報を取得した後、各グループの開始位置をどのようにして知ることができますか。
開始位置は 8 であることがわかります。 , 12, 16...
これは等差数列でもあり、4n 4
ここで検討しているのは size= の例です。 65
计算的偏移量是0
计算的起始位置是4*1 + 4 = 8
所以当size=65的bin_num就是起始位置加上偏移量 8 + 0 = 8
我们再看一个size=129的例子
二进制中最高位的1
的位数为8
然后用8减去3得到5
(129 - 1 - 32 * 4) / 64 = 0
偏移量是
计算起始位置是 4 * 2 + 4 = 12
两者相加就是 12 + 0 = 0
size=193
二进制中最高位的1
的位数为8
(193 - 1 - 32 * 4) / 64 = 2
偏移量是
计算起始位置是 4 * 2 + 4 = 12
两者相加就是 12 + 2 = 14
size=1793
二进制中最高位的1
的位数为11
(1793 - 1 - 256 * 4) / 256 = 3
偏移量是
计算起始位置是 4 * 5 + 4 = 24
两者相加就是 24 + 3 = 27
1 t1 = size - 1; 2 t2 = zend_mm_small_size_to_bit(t1) - 3; 3 t1 = t1 >> t2; 4 t2 = t2 - 3; 5 t2 = t2 << 2; 6 return (int)(t1 + t2);
t1 = size - 1;
是为了考虑size为64、128...这些边界情况
t2 = zend_mm_small_size_to_bit(t1) - 3;
这里调用了zend_mm_small_size_to_bit
这个函数,我们看看这个函数
/* higher set bit number (0->N/A, 1->1, 2->2, 4->3, 8->4, 127->7, 128->8 etc) */ int n = 16; if (size <= 0x00ff) {n -= 8; size = size << 8;} if (size <= 0x0fff) {n -= 4; size = size << 4;} if (size <= 0x3fff) {n -= 2; size = size << 2;} if (size <= 0x7fff) {n -= 1;} return n;
看注释我们就知道这个函数是用来返回当前size二进制中最高位1的位数,具体的做法呢其实就是二分法
我们通过zend_mm_small_size_to_bit
这个函数获取了size二进制中最高位1的位数,那么这个 -3
是什么神奇的操作呢
(size - 2^4 * 4) / 16 = size / 2^4 - 4 (size - 2^5 * 4) / 32 = size / 2^5 - 4 (size - 2^6 * 4) / 64 = szie / 2^6 - 4
这里获取二进制的位数是7、8、9...通过 -3
的操作来获取相应的 4、5、6...
上问的分析中提到,我们计算size在组内的偏移量的公式
t1 = t1 >> t2;</pre></h3>
<li><p>把t1右移t2位,这又是什么神奇的操作?</p></li>
<li><p>这里我们把最后计算bin_num的数学公式给写出来,它是等于每组的起始位置加上组内的偏移量</p></li>
<pre class="brush:php;toolbar:false">binnum = (4n + 4) + (size / 2^n - 4)
binnum = 4n + size / 2^n</pre>
<ul class=" list-paddingleft-2"><li><p>所以第三行的意思我们就知道了,就是size右移2^n次方为</p></li></ul>
<h4>第四行</h4>
<ul class=" list-paddingleft-2">
<li><p><code>t2 = t2 - 3;
这个好理解,可以参照上文得到每组的起始位置的方法
t2 = t2 << 2;
我们再看看bin_num的计算公式
binnum = (4n + 4) + (size / 2^n - 4) binnum = 4n + size / 2^n
那么这行就好理解了,就是计算每组的起始位置4n
对吧,左移两位就是乘以4
return (int)(t1 + t2);
这行没啥说的,就是返回了一个int类型的bin_num
以上がPHPでの小規模メモリ仕様の計算(コード例)の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。