検索
ホームページバックエンド開発Python チュートリアルDjango 開発のための mongodb の構成と使用

Django 開発のための mongodb の構成と使用

Dec 12, 2018 am 10:18 AM
djangomongodbpython

この記事の内容は、Django 開発における mongodb の設定と使用法に関するものであり、一定の参考価値がありますので、困っている方は参考にしていただければ幸いです。

今日はdjangoプロジェクトでmongodbを使う方法を整理しました環境はubuntu18.04, django2.0.5, drf3.9, mongoengine0.16

最初のステップ: settings.py で mongodb と mysql を設定します。設定は次のとおりです (mysql と mongodb は同時に使用できます):

DATABASES = {
    'default': {
        'ENGINE': 'django.db.backends.mysql',   # 数据库引擎
        'NAME': 'django_test2',                  # 你要存储数据的库名,事先要创建之
        'USER': 'root',                         # 数据库用户名
        'PASSWORD': 'wyzane',                     # 密码
        'HOST': 'localhost',                    # 主机
        'PORT': '3306',                         # 数据库使用的端口
    },
    'mongotest': {
        'ENGINE': None,
    }
}
import mongoengine
# 连接mongodb中数据库名称为mongotest5的数据库
conn = mongoengine.connect("mongotest")

ステップ 2: mongodb にデータを挿入

1. json 型データを挿入

models.py:
    import mongoengine
    class StudentModel(mongoengine.Document):
        name = mongoengine.StringField(max_length=32)
        age = mongoengine.IntField()
        password = mongoengine.StringField(max_length=32)

views.py:
    from rest_framework.views import APIView
    class FirstMongoView(APIView):
        def post(self, request):
            name = request.data["name"]
            age = request.data["age"]
            password = request.data["password"]
            StudentModel.objects.create(name=name, age=age, password=password)
            return Response(dict(msg="OK", code=10000))

挿入されるデータの形式は次のとおりです:

{
    "name": "nihao",
    "age": 18,
    "password": "123456"
}

2. リストを含む json データを挿入します##

models.py:
    import mongoengine
    class Student2Model(mongoengine.Document):
        name = mongoengine.StringField(max_length=32)
        # 用于存储list类型的数据
        score = mongoengine.ListField()

views.py:
    from rest_framework.views import APIView
    class FirstMongo2View(APIView):
        def post(self, request):
            name = request.data["name"]
            score = request.data["score"]
            Student2Model.objects.create(name=name, score=score)
            return Response(dict(msg="OK", code=10000))
挿入されるデータの形式は:

{
     "name": "test",
     "score": [12, 13]
}
3. dict と list の複雑な JSON データを含むデータを挿入します

models.py:
    import mongoengine
    class Student3Model(mongoengine.Document):
        name = mongoengine.StringField(max_length=32)
        # DictField用于存储字典类型的数据
        score = mongoengine.DictField()
views.py:
    from rest_framework.views import APIView
    class FirstMongo3View(APIView):
        def post(self, request):
            name = request.data["name"]
            score = request.data["score"]
            Student3Model.objects.create(name=name, score=score)
            return Response(dict(msg="OK", code=10000))
挿入データの形式は:

{
    "name": "test",
    "score": {"xiaoming": 12, "xiaoli": 13}
}
或者:
{
    "name": "test",
    "score": {"xiaoming": 12, "xiaoli": {"xiaozhao": 14}}
}
或者:
{
"name": "test",
"score": {"xiaoming": 12, "xiaoli": {"xiaozhao": {"xiaoliu": 12, "xiaojian": 18}}}
}
或者:
{
"name": "test",
"score": {"xiaoming": 12, "xiaoli": {"xiaozhao": {"xiaoliu": 12, "xiaojian": [12,13,14]}}}
}
ステップ 3: データをクエリします。 mongodb

1. 複雑な JSON データをクエリしてシリアル化する

serializers.py:
    class StudentSerializer(serializers.Serializer):
        name = serializers.CharField()
        score = serializers.DictField()  # 序列化复杂的json数据
        # DictField与EmbeddedDocumentField类似,但是比EmbeddedDocumentField更灵活
views.py:
    class FirstMongo4View(APIView):
        def get(self, request):
            student_info = Student3Model.objects.all()
            # 增加过滤条件
            # student_info = Student3Model.objects.filter(name="test1")
            ser = StudentSerializer(instance=student_info, many=True)
            return Response(dict(msg="OK", code="10000", data=ser.data))
2. mongodb でネストされた関係を持つ 2 つのドキュメントをシリアル化する

models.py:
    class AuthorModel(mongoengine.EmbeddedDocument):
        author_name = mongoengine.StringField(max_length=32)
        age = mongoengine.IntField()


    class BookModel(mongoengine.Document):
        book_name = mongoengine.StringField(max_length=64)
        publish = mongoengine.DateTimeField(default=datetime.datetime.utcnow())
        words = mongoengine.IntField()
        author = mongoengine.EmbeddedDocumentField(AuthorModel)

serializers.py: 序列化时注意与rest_framework的序列化中DictField()的区别
    from rest_framework_mongoengine import serializers as s1
    class AuthorSerializer(s1.DocumentSerializer):  
        # DocumentSerializer继承自drf中的ModelSerializer,用于代替ModelSerializer序列化mongodb中的document.
        # 具体可以到官网上查看
        class Meta:
            model = AuthorModel
            fields = ('author_name', 'age')


    class BookSerializer(s1.DocumentSerializer):
        author = AuthorSerializer()

        class Meta:
            model = BookModel
            fields = ('book_name', 'publish', 'words', 'author')

    AuthorSerializer还可以这样写:
    class AuthorSerializer(s1.EmbeddedDocumentSerializer):
        # EmbeddedDocumentSerializer继承了DocumentSerializer
        class Meta:
            model = AuthorModel
            fields = ('author_name', 'age')

views.py:
    class BookView(APIView):
        def get(self, request):
            """
            查询数据
            :param request:
            :return:
            """
            books = BookModel.objects.all()
            ser = BookSerializer(instance=books, many=True)
            return Response(dict(msg="OK", code="10000", data=ser.data))
mongodb で 2 つの関連テーブルをシリアル化するとき、シリアライザーがrest_frameworkのSerializerとModelSerializerを継承すると、次の例外がスローされます:

Django serialization to JSON error: 'MetaDict' object has no attribute 'concrete_model'
現時点では、シリアライザーはrest_framework_mongoengineのクラスから継承する必要があります。詳細については、公式Webサイトを確認してください:

http://umutbozkurt.github.io/...

以上がDjango 開発のための mongodb の構成と使用の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事はsegmentfaultで複製されています。侵害がある場合は、admin@php.cn までご連絡ください。
Pythonと時間:勉強時間を最大限に活用するPythonと時間:勉強時間を最大限に活用するApr 14, 2025 am 12:02 AM

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

Python:ゲーム、GUIなどPython:ゲーム、GUIなどApr 13, 2025 am 12:14 AM

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

Python vs. C:比較されたアプリケーションとユースケースPython vs. C:比較されたアプリケーションとユースケースApr 12, 2025 am 12:01 AM

Pythonは、データサイエンス、Web開発、自動化タスクに適していますが、Cはシステムプログラミング、ゲーム開発、組み込みシステムに適しています。 Pythonは、そのシンプルさと強力なエコシステムで知られていますが、Cは高性能および基礎となる制御機能で知られています。

2時間のPython計画:現実的なアプローチ2時間のPython計画:現実的なアプローチApr 11, 2025 am 12:04 AM

2時間以内にPythonの基本的なプログラミングの概念とスキルを学ぶことができます。 1.変数とデータ型、2。マスターコントロールフロー(条件付きステートメントとループ)、3。機能の定義と使用を理解する4。

Python:主要なアプリケーションの調査Python:主要なアプリケーションの調査Apr 10, 2025 am 09:41 AM

Pythonは、Web開発、データサイエンス、機械学習、自動化、スクリプトの分野で広く使用されています。 1)Web開発では、DjangoおよびFlask Frameworksが開発プロセスを簡素化します。 2)データサイエンスと機械学習の分野では、Numpy、Pandas、Scikit-Learn、Tensorflowライブラリが強力なサポートを提供します。 3)自動化とスクリプトの観点から、Pythonは自動テストやシステム管理などのタスクに適しています。

2時間でどのくらいのPythonを学ぶことができますか?2時間でどのくらいのPythonを学ぶことができますか?Apr 09, 2025 pm 04:33 PM

2時間以内にPythonの基本を学ぶことができます。 1。変数とデータ型を学習します。2。ステートメントやループの場合などのマスター制御構造、3。関数の定義と使用を理解します。これらは、簡単なPythonプログラムの作成を開始するのに役立ちます。

プロジェクトの基本と問題駆動型の方法で10時間以内にコンピューター初心者プログラミングの基本を教える方法は?プロジェクトの基本と問題駆動型の方法で10時間以内にコンピューター初心者プログラミングの基本を教える方法は?Apr 02, 2025 am 07:18 AM

10時間以内にコンピューター初心者プログラミングの基本を教える方法は?コンピューター初心者にプログラミングの知識を教えるのに10時間しかない場合、何を教えることを選びますか...

中間の読書にどこでもfiddlerを使用するときにブラウザによって検出されないようにするにはどうすればよいですか?中間の読書にどこでもfiddlerを使用するときにブラウザによって検出されないようにするにはどうすればよいですか?Apr 02, 2025 am 07:15 AM

fiddlereveryversings for the-middleの測定値を使用するときに検出されないようにする方法

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強力な PHP 統合開発環境

SublimeText3 Linux 新バージョン

SublimeText3 Linux 新バージョン

SublimeText3 Linux 最新バージョン

VSCode Windows 64 ビットのダウンロード

VSCode Windows 64 ビットのダウンロード

Microsoft によって発売された無料で強力な IDE エディター

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール