本篇文章给大家带来的内容是介绍python什么是递归?两种优先搜索算法的实现 (代码示例)。有一定的参考价值,有需要的朋友可以参考一下,希望对你们有所帮助。
一、递归原理小案例分析
(1)# 概述
递归:即一个函数调用了自身,即实现了递归 凡是循环能做到的事,递归一般都能做到!
(2)# 写递归的过程
1、写出临界条件
2、找出这一次和上一次关系
3、假设当前函数已经能用,调用自身计算上一次的结果,再求出本次的结果
(3)案例分析:求1+2+3+...+n的数和
# 概述 ''' 递归:即一个函数调用了自身,即实现了递归 凡是循环能做到的事,递归一般都能做到! ''' # 写递归的过程 ''' 1、写出临界条件 2、找出这一次和上一次关系 3、假设当前函数已经能用,调用自身计算上一次的结果,再求出本次的结果 ''' # 问题:输入一个大于1 的数,求1+2+3+.... def sum(n): if n==1: return 1 else: return n+sum(n-1) n=input("请输入:") print("输出的和是:",sum(int(n))) ''' 输出: 请输入:4 输出的和是: 10 '''
#__author:"吉*佳" #date: 2018/10/21 0021 #function: import os def getAllDir(path): fileList = os.listdir(path) print(fileList) for fileName in fileList: fileAbsPath = os.path.join(path,fileName) if os.path.isdir(fileAbsPath): print("$$目录$$:",fileName) getAllDir(fileAbsPath) else: print("**普通文件!**",fileName) # print(fileList) pass getAllDir("G:\\")
输出结果如下:
二、深度遍历与广度遍历
(一)、深度优先搜索
说明:深度优先搜索借助栈结构来进行模拟
深度遍历示意图:
说明:
先把A压栈进去,在A出栈的同时把B C压栈进去,此时让B出栈的同时把DE压栈(C留着先不处理) 同理,在D出栈的时候,H I压栈,最后再从上往下
取出栈内还未出栈的元素,即达到深度优先遍历。
案例实践:利用栈来深度搜索打印出目录结构
程序代码:
#__author:"吉**" #date: 2018/10/21 0021 #function: # 深度优先遍历目录层级结构 import os def getAllDirDP(path): stack = [] # 压栈操作,相当于图中的A压入 stack.append(path) # 处理栈,当栈为空的时候结束循环 while len(stack) != 0: #从栈里取数据,相当于取出A,取出A的同时把BC压入 dirPath = stack.pop() firstList = os.listdir(dirPath) #判断:是目录压栈,把该目录地址压栈,不是目录即是普通文件,打印 for filename in firstList: fileAbsPath=os.path.join(dirPath,filename) if os.path.isdir(fileAbsPath): #是目录就压栈 print("目录:",filename) stack.append(fileAbsPath) else: #是普通文件就打印即可,不压栈 print("普通文件:",filename) getAllDirDP(r'E:\[AAA](千)全栈学习python\18-10-21\day7\temp\dir')
结果:
该过程示意图解释:(s-05-1部分)
原理分析:
说明:
队列是 先进先出的模型。A先进队,在A出队的时候,C B入队,按图示,C出队,FG 入队,B出队,DE入队,
F出队,JK入队,G出队,无入队,D出队,H I入队,最后E J K H I出队,均无入队了,即每一层一层处理、
故:先进先出的队列结构实现了广度优先遍历。 先进后出的栈结构实现的是深度优先遍历。
代码实现:
其实深度优先和广度优先在代码书写上是差别不大的,基本相同,只是一个是使用栈结构(用列表进行模拟)
另一个(广度优先遍历)是使用了队列的数据结构来达到先进先出的目的。
#__author:"吉**" #date: 2018/10/21 0021 #function: # 广度优先搜索模拟 # 利用队列来模拟广度优先搜索 import os import collections def getAllDirIT(path): queue=collections.deque() #进队 queue.append(path) #循环,当队列为空,停止循环 while len(queue) != 0: #出队数据 这里相当于找到A元素的绝对路径 dirPath = queue.popleft() # 找出跟目录下的所有的子目录信息,或者是跟目录下的文件信息 dirList = os.listdir(dirPath) #遍历该文件夹下的其他信息 for filename in dirList: #绝对路径 dirAbsPath = os.path.join(dirPath,filename) # 判断:如果是目录dir入队操作,如果不是dir打印出即可 if os.path.isdir(dirAbsPath): print("目录:"+filename) queue.append(dirAbsPath) else: print("普通文件:"+filename) # 函数的调用 getAllDirIT(r'E:\[AAA](千)全栈学习python\18-10-21\day7\temp\dir')
广度优先运行输出结构:
先图解:按照每一层从左到右遍历即可实现。
结束!
以上がPythonの再帰とは何ですか? 2 つの優先検索アルゴリズムの実装 (コード例)の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Arraysinpython、特にvianumpy、arecrucialinscientificComputing fortheirefficienty andversitility.1)彼らは、fornumericaloperations、data analysis、andmachinelearning.2)numpy'simplementation incensuresfasteroperationsthanpasteroperations.3)arayableminablecickick

Pyenv、Venv、およびAnacondaを使用して、さまざまなPythonバージョンを管理できます。 1)Pyenvを使用して、複数のPythonバージョンを管理します。Pyenvをインストールし、グローバルバージョンとローカルバージョンを設定します。 2)VENVを使用して仮想環境を作成して、プロジェクトの依存関係を分離します。 3)Anacondaを使用して、データサイエンスプロジェクトでPythonバージョンを管理します。 4)システムレベルのタスク用にシステムPythonを保持します。これらのツールと戦略を通じて、Pythonのさまざまなバージョンを効果的に管理して、プロジェクトのスムーズな実行を確保できます。

numpyarrayshaveveraladvantages-averstandardpythonarrays:1)thealmuchfasterduetocベースのインプレンテーション、2)アレモレメモリ効率、特にlargedatasets、および3)それらは、拡散化された、構造化された形成術科療法、

パフォーマンスに対する配列の均一性の影響は二重です。1)均一性により、コンパイラはメモリアクセスを最適化し、パフォーマンスを改善できます。 2)しかし、タイプの多様性を制限し、それが非効率につながる可能性があります。要するに、適切なデータ構造を選択することが重要です。

craftexecutablepythonscripts、次のようになります

numpyarraysarasarebetterfornumeroperations andmulti-dimensionaldata、whilethearraymoduleissuitable forbasic、1)numpyexcelsinperformance and forlargedatasentassandcomplexoperations.2)thearraymuremememory-effictientivearientfa

NumPyArraySareBetterforHeavyNumericalComputing、whilethearrayarayismoreSuitableformemory-constrainedprojectswithsimpledatatypes.1)numpyarraysofferarays andatiledance andpeperancedatasandatassandcomplexoperations.2)thearraymoduleisuleiseightweightandmemememe-ef

ctypesallowsinging andmanipulatingc-stylearraysinpython.1)usectypestointerfacewithclibrariesforperformance.2)createc-stylearraysfornumericalcomputations.3)passarraystocfunctions foreffientientoperations.how、how、becuutiousmorymanagemation、performanceo


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

Dreamweaver Mac版
ビジュアル Web 開発ツール

メモ帳++7.3.1
使いやすく無料のコードエディター

MantisBT
Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

ドリームウィーバー CS6
ビジュアル Web 開発ツール

ホットトピック









