検索
ホームページバックエンド開発Python チュートリアルスレッド間のリソース共有と、Python マルチスレッドで一般的に使用されるロック メカニズムの概要

この記事では、Python マルチスレッドのスレッド間でリソース共有と一般的に使用されるロック メカニズムについて紹介します。これには一定の参考値があります。必要な友人は参照できます。お役に立てば幸いです。

#この記事では、スレッド間のリソース共有と、マルチスレッド プログラミングで一般的に使用されるロック メカニズムについて簡単に紹介します。

マルチスレッド プログラミングでは、スレッド間のリソース共有が頻繁に行われます。一般的に使用されるリソース共有方法は次のとおりです:

  • グローバル変数 (グローバル)

  • queue(キューインポートキューから)

一般的に使用されるリソース共有ロックメカニズム:

  • Lock

  • Rロック

  • セムフォア

  • 状態

( 1) スレッド間のリソース共有

  1. グローバル変数を使用することでスレッド間のリソース共有を実現できます。キーワード グローバル

コードデモ:

from threading import Thread, Lock
lock = Lock()
total = 0

'''如果不使用lock那么,最后得到的数字不一定为0;同时loack不支持连续多次acquire,如果这样做了的后果是死锁!'''
def add():
    global total
    global lock
    for i in range(1000000):
        lock.acquire()
        total += 1
        lock.release()
    
def sub():
    global total
    global lock
    for i in range(1000000):
        lock.acquire()
        total -= 1
        lock.release()
    
thread1 = Thread(target=add)
thread2 = Thread(target=sub)


# 将Thread1和2设置为守护线程,主线程完成时,子线程也一起结束
# thread1.setDaemon(True)
# thread1.setDaemon(True)

# 启动线程
thread1.start()
thread2.start()

# 阻塞,等待线程1和2完成,如果不使用join,那么主线程完成后,子线程也会自动关闭。
thread1.join()
thread2.join()

total

  1. キューを使用してリソースを共有します。キューはスレッドセーフです。

  2. from threading import Thread, Lock
    from queue import Queue
    
    def add(q):
        if q.not_full:
            q.put(1)
        
    def sub(q):
        if q.not_empty:
            recv = q.get()
            print(recv)
            q.task_done()
            
    if __name__ =='__main__':
        # 设置q最多接收3个任务,Queue是线程安全的,所以不需要Lock
        qu = Queue(3)
        thread1 = Thread(target=add, args=(qu,))
        thread2 = Thread(target=sub, args=(qu,))
        thread1.start()
        thread2.start()
        # q队列堵塞,等待所有任务都被处理完。
        qu.join()
(2) ロック(ロック/Rロック/条件/セムフォア)

  1. ロック

#Lock は継続的にロックを取得できないため、デッドロックが発生し、Lock リソースの競合によりデッドロックが発生する可能性があります。

ロックするとパフォーマンスが低下します。

from threading import Thread, Lock
lock = Lock()
total = 0

'''如果不使用lock那么,最后得到的数字不一定为0;同时lock不支持连续多次acquire,如果这样做了的后果是死锁!'''
def add():
    global total
    global lock
    for i in range(1000000):
        lock.acquire()
        total += 1
        lock.release()
    
def sub():
    global total
    global lock
    for i in range(1000000):
        lock.acquire()
        total -= 1
        lock.release()
    
thread1 = Thread(target=add)
thread2 = Thread(target=sub)

# 将Thread1和2设置为守护线程,主线程完成时,子线程也一起结束
# thread1.setDaemon(True)
# thread1.setDaemon(True)

# 启动线程
thread1.start()
thread2.start()

# 阻塞,等待线程1和2完成,如果不使用join,那么主线程完成后,子线程也会自动关闭。
thread1.join()
thread2.join()
total

  1. RLock

RLock は継続的にロックを取得できますが、ロックを解放するには対応する数の解放が必要です

連続的に取得できるため Lock なので関数内で lock 付き関数を呼び出します

from threading import Thread, Lock, RLock
lock = RLock()
total = 0
def add():
    global lock
    global total
    # RLock实现连续获取锁,但是需要相应数量的release来释放资源
    for i in range(1000000):
        lock.acquire()
        lock.acquire()
        total += 1
        lock.release()
        lock.release()
def sub():
    global lock
    global total
    for i in range(1000000):
        lock.acquire()
        total -= 1
        lock.release()
thread1 = Thread(target=add)
thread2 = Thread(target=sub)
thread1.start()
thread2.start()
thread1.join()
thread2.join()
total

  1. 条件条件変数

条件条件変数に従いますコンテキスト管理プロトコル: ステートメントで使用すると、それを囲んでいるブロックの間、関連するロックが取得されます。

wait() メソッドはロックを解放し、別のスレッドが Notice() または Notify_all() を呼び出してウェイクアップするまでブロックします。起動されると、wait() はロックを再取得して戻ります。タイムアウトも指定できます。

最初に wait 関数を開始してシグナルを受信し、次に通知関数を開始してシグナルを送信します。

from threading import Thread, Condition
'''聊天
    Peaple1 : How are you?
    Peaple2 : I`m fine, thank you!
    
    Peaple1 : What`s your job?
    Peaple2 : My job is teacher.
    
'''

def Peaple1(condition):
    with condition:
        print('Peaple1 : ', 'How are you?')
        condition.notify()
        condition.wait()
        
        print('Peaple1 : ', 'What`s your job?')
        condition.notify()
        condition.wait()

def Peaple2(condition):
    with condition:
        condition.wait()
        print('Peaple2 : ', 'I`m fine, thank you!')
        condition.notify()
        
        condition.wait()
        print('Peaple2 : ', 'My job is teacher.')
        condition.notify()


if __name__ == '__main__':
    cond = Condition()
    thread1 = Thread(target=Peaple1, args=(cond,))
    thread2 = Thread(target=Peaple2, args=(cond,))
    
    # 此处thread2要比thread1提前启动,因为notify必须要有wait接收;如果先启动thread1,没有wait接收notify信号,那么将会死锁。
    thread2.start()
    thread1.start()

#     thread1.join()
#     thread2.join()

  1. Semphore

このクラスはセマフォ オブジェクトを実装します。セマフォは、release() 呼び出しの数からacquire() 呼び出しの数と初期値を加えた数を表すアトミック カウンタを管理します。必要に応じて、acquire() メソッドは、カウンタを負にせずに戻ることができるまでブロックします。指定しない場合、値はデフォルトの 1 になります。

#Semaphore 是用于控制进入数量的锁
#文件, 读、写, 写一般只是用于一个线程写,读可以允许有多个

import threading
import time

class HtmlSpider(threading.Thread):
    def __init__(self, url, sem):
        super().__init__()
        self.url = url
        self.sem = sem

    def run(self):
        time.sleep(2)
        print("Download {html} success\n".format(html=self.url))
        self.sem.release()

class UrlProducer(threading.Thread):
    def __init__(self, sem):
        super().__init__()
        self.sem = sem

    def run(self):
        for i in range(20):
            self.sem.acquire()
            html_thread = HtmlSpider("https://www.baidu.com/{}".format(i), self.sem)
            html_thread.start()

if __name__ == "__main__":
    # 控制锁的数量, 每次同时会有3个线程获得锁,然后输出
    sem = threading.Semaphore(3)
    url_producer = UrlProducer(sem)
    url_producer.start()

(3) マルチプロセス プログラミングの概要

  1. マルチプロセス プログラミングでは、プロセス間でグローバル変数を共有できず、queue.Queue を使用することもできません。 used

  2. マルチプロセス プログラミング通信にはキュー、パイプの使用が必要です

  3. #プロセス プール プロセス プログラミングを使用する場合は、通信を確立するための Manger インスタンスのキュー

以上がスレッド間のリソース共有と、Python マルチスレッドで一般的に使用されるロック メカニズムの概要の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事はCSDNで複製されています。侵害がある場合は、admin@php.cn までご連絡ください。
numpyを使用してマルチディメンシャルアレイをどのように作成しますか?numpyを使用してマルチディメンシャルアレイをどのように作成しますか?Apr 29, 2025 am 12:27 AM

Numpyを使用して多次元配列を作成すると、次の手順を通じて実現できます。1)numpy.array()関数を使用して、np.array([[1,2,3]、[4,5,6]])などの配列を作成して2D配列を作成します。 2)np.zeros()、np.ones()、np.random.random()およびその他の関数を使用して、特定の値で満たされた配列を作成します。 3)アレイの形状とサイズの特性を理解して、サブアレイの長さが一貫していることを確認し、エラーを回避します。 4)np.reshape()関数を使用して、配列の形状を変更します。 5)コードが明確で効率的であることを確認するために、メモリの使用に注意してください。

Numpyアレイの「ブロードキャスト」の概念を説明します。Numpyアレイの「ブロードキャスト」の概念を説明します。Apr 29, 2025 am 12:23 AM

BroadcastinginNumPyisamethodtoperformoperationsonarraysofdifferentshapesbyautomaticallyaligningthem.Itsimplifiescode,enhancesreadability,andboostsperformance.Here'showitworks:1)Smallerarraysarepaddedwithonestomatchdimensions.2)Compatibledimensionsare

データストレージ用のリスト、array.array、およびnumpy配列を選択する方法を説明します。データストレージ用のリスト、array.array、およびnumpy配列を選択する方法を説明します。Apr 29, 2025 am 12:20 AM

Forpythondatastorage、chooseLists forfficability withmixeddatypes、array.arrayformemory-efficienthogeneousnumericaldata、およびnumpyArrays foradvancednumericalcomputing.listSareversatilebuteficient efficient forlargeNumericaldatates;

Pythonリストを使用することが配列を使用するよりも適切であるシナリオの例を挙げてください。Pythonリストを使用することが配列を使用するよりも適切であるシナリオの例を挙げてください。Apr 29, 2025 am 12:17 AM

pythonlistsarebetterthanarrays formangingdiversedatypes.1)listscanholdelementsofdifferenttypes、2)adearedditionsandremovals、3)theeofferintutiveoperation likeslicing、but4)theearlessememory-effice-hemory-hemory-hemory-hemory-hemory-adlower-dslorededatas。

Pythonアレイ内の要素にどのようにアクセスしますか?Pythonアレイ内の要素にどのようにアクセスしますか?Apr 29, 2025 am 12:11 AM

toaccesselementsinapythonarray、useindexing:my_array [2] Accessesthirderement、Returning3.pythonuseszero basedIndexing.1)usepositiveandnegativeindexing:my_list [0] forteefirstelement、my_list [-1] exterarast.2)

Pythonでタプルの理解が可能ですか?はいの場合、どうしてそうでない場合は?Pythonでタプルの理解が可能ですか?はいの場合、どうしてそうでない場合は?Apr 28, 2025 pm 04:34 PM

記事では、構文のあいまいさのためにPythonにおけるタプル理解の不可能性について説明します。 Tupple式を使用してTuple()を使用するなどの代替は、Tuppleを効率的に作成するためにお勧めします。(159文字)

Pythonのモジュールとパッケージとは何ですか?Pythonのモジュールとパッケージとは何ですか?Apr 28, 2025 pm 04:33 PM

この記事では、Pythonのモジュールとパッケージ、その違い、および使用について説明しています。モジュールは単一のファイルであり、パッケージは__init__.pyファイルを備えたディレクトリであり、関連するモジュールを階層的に整理します。

PythonのDocstringとは何ですか?PythonのDocstringとは何ですか?Apr 28, 2025 pm 04:30 PM

記事では、PythonのDocstrings、それらの使用、および利点について説明します。主な問題:コードのドキュメントとアクセシビリティに関するドキュストリングの重要性。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

AtomエディタMac版ダウンロード

AtomエディタMac版ダウンロード

最も人気のあるオープンソースエディター

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

Dreamweaver Mac版

Dreamweaver Mac版

ビジュアル Web 開発ツール

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

SecLists

SecLists

SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。