ホームページ  >  記事  >  バックエンド開発  >  Python の分散プロセスの詳細な紹介 (例付き)

Python の分散プロセスの詳細な紹介 (例付き)

不言
不言オリジナル
2018-09-20 17:18:343099ブラウズ

この記事の内容は、PHP の SAPI とは何ですか?どのように達成するか? (写真と文章)、一定の参考価値がありますので、困っている友人の参考にしていただければ幸いです。

スレッドとプロセスの中では、プロセスの方が安定しており、プロセスは複数のマシンに分散できるのに対し、スレッドは最大でも同じマシン上の複数の CPU にしか分散できないため、プロセスを優先する必要があります。

Python のマルチプロセッシング モジュールは複数のプロセスをサポートするだけでなく、マネージャ サブモジュールは複数のプロセスを複数のマシンに分散することもサポートします。サービス プロセスはスケジューラとして機能し、ネットワーク通信に依存してタスクを他の複数のプロセスに分散できます。マネージャー モジュールは適切にカプセル化されているため、ネットワーク通信の詳細を知らなくても、分散マルチプロセス プログラムを簡単に作成できます。

マネージャ モジュールを介してネットワーク経由でキューを公開すると、他のマシン上のプロセスがキューにアクセスできるようになります。まずサービス プロセスを見てみましょう. サービス プロセスは、キューを開始し、ネットワーク上にキューを登録し、キューにタスクを書き込む役割を果たします。

BaseManager: 異なるマシン プロセス間でデータを共有する方法を提供します;

(重要的点: ip:port)
# task_master.py

import random
from multiprocessing import freeze_support
from queue import Queue
from multiprocessing.managers import  BaseManager
# 1. 创建需要的队列
# task_queue:发送任务的队列
# coding=utf-8

import random,time
from queue import Queue
from multiprocessing.managers import BaseManager
from multiprocessing import freeze_support

task_queue =  Queue()  # 发送任务的队列:
result_queue = Queue() # 接收结果的队列:
class QueueManager(BaseManager):  # 从BaseManager继承的QueueManager:
    pass
# windows下运行
def return_task_queue():
    global task_queue
    return task_queue  # 返回发送任务队列
def return_result_queue ():
    global result_queue
    return result_queue # 返回接收结果队列

def test():
    # 把两个Queue都注册到网络上, callable参数关联了Queue对象,它们用来进行进程间通信,交换对象
    #QueueManager.register('get_task_queue', callable=lambda: task_queue)
    #QueueManager.register('get_result_queue', callable=lambda: result_queue)
    QueueManager.register('get_task_queue', callable=return_task_queue)
    QueueManager.register('get_result_queue', callable=return_result_queue)
    # 绑定端口4000, 设置验证码'sheenstar':
    #manager = QueueManager(address=('', 4000), authkey=b'sheenstar')
    # windows需要写ip地址
    manager = QueueManager(address=('192.168.1.160', 4000), authkey=b'sheenstar')
    manager.start()  # 启动Queue:
    # 获得通过网络访问的Queue对象:
    task = manager.get_task_queue()
    result = manager.get_result_queue()
    for i in range(13):   # 放几个任务进去:
        n = random.randint(0, 10000)
        print('Put task %d...' % n)
        task.put(n)
    # 从result队列读取结果:
    print('Try get results...')
    for i in range(13):
        r = result.get(timeout=10)
        print('Result: %s' % r)

    # 关闭:
    manager.shutdown()
    print('master exit.')
if __name__=='__main__':
    freeze_support()
    print('start!')
    test()

プログラムを実行すると、実行結果を 10 秒待ちます。タスクを実行すると、結果が返され、プログラムはエラーを報告します。

Python の分散プロセスの詳細な紹介 (例付き)

1台のマシン上でマルチプロセスのプログラムを書く場合、作成したQueueを直接利用することができますが、分散マルチプロセスではこのようになります。この環境では、Queue へのタスクの追加は、QueueManager のカプセル化をバイパスするため、元の task_queue で直接操作することはできません。manager.get_task_queue() によって取得される Queue インターフェイスを通じて追加する必要があります。

# coding=utf-8
import time, sys
from queue import Queue
from multiprocessing.managers import BaseManager

# 创建类似的QueueManager:
class QueueManager(BaseManager):
    pass

# 由于这个QueueManager只从网络上获取Queue,所以注册时只提供名字:
QueueManager.register('get_task_queue')
QueueManager.register('get_result_queue')

# 连接到服务器,也就是运行task_master.py的机器:
server_addr = '192.168.1.160'
print('Connect to server %s...' % server_addr)
# 端口和验证码注意保持与task_master.py设置的完全一致:
m = QueueManager(address=(server_addr, 4000), authkey=b'sheenstar')
# 从网络连接:
try:
    m.connect()
except:
    print('请先启动task_master.py!')
    #sys.exit("sorry, goodbye!");
# 获取Queue的对象:
task = m.get_task_queue()
result = m.get_result_queue()
# 从task队列取任务,并把结果写入result队列:
for i in range(13):
    try:
        n = task.get()
        print('run task %d * %d...' % (n, n))
        r = '%d * %d = %d' % (n, n, n*n)
        time.sleep(1)
        result.put(r)
    except ConnectionResetError as e:
        print("任务执行结束,自动断开连接")
# 处理结束:
print('worker exit.')

コマンド ラインを使用してプログラムを実行すると、結果がより直感的になります

Python の分散プロセスの詳細な紹介 (例付き)

以上がPython の分散プロセスの詳細な紹介 (例付き)の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明:
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。