この記事は、タグに基づいたコンテンツのレコメンデーションを実装する方法 (コード) に関するものです。必要な方は参考にしていただければ幸いです。
単純さと利便性のために、私の小さな Web サイトの記事ページに関連するコンテンツの推奨事項は、データベースからデータをランダムに抽出してリストを埋めることになっているため、相関関係がまったくないことがわかりました。 、ユーザーを推奨コンテンツにアクセスするように誘導する方法はありません。
アルゴリズムの選択
小規模な Web サイトはまだ仮想ホスト上で実行されているため (完全に制御可能なサーバーさえありません)、どのようにして同様のコンテンツを推奨できるでしょうか?考える方法はあまり多くありません。条件としては、PHP MySql のみを使用できるということです。そこで私が考えたのが、タグを使って類似記事を照合してレコメンドするという方法です。 2 つの記事のタグが類似している場合
例: 記事 A のタグは: [A,B,C,D,E]記事 B のタグは: [A,D,E,F] ,G]
記事 C のタグは次のとおりです: [C,H,I,J,K]
記事 B と記事 A は、同じキーワードが 3 つあるため、より類似していることが目で簡単にわかります。 : [A、D、E]、コンピューターを使用してそれらの類似性を判断するにはどうすればよいですか? ここでは、jaccard 類似度 の最も基本的なアプリケーションを使用して類似度を計算します
Jaccard 類似度
2 つのセット A と B がある場合、Jaccard 係数は、A と B の和集合のサイズに対する A と B の交差のサイズの比率として定義されます。次のように定義されます。 :
記事 A と記事 B の共通部分は [A,D,E]、サイズは 3、和集合は [A] ,B,C,D, E, F, G]、サイズは 7、3/7=0.4285...
記事 A と記事 C の共通部分は [C]、サイズは 1、そしてUnion は [A, B, C, D, E,H,I,J,K]、サイズは 9、1/9=0.11111...
このようにして、次のように結論付けることができます。記事 A と B は、記事 A と C よりも類似しています。このアルゴリズムを使用すると、コンピューターは 2 つの記事の類似性を判断できます。
具体的な推奨アイデア
与えられた記事で、その記事のキーワード TAGS を取得し、上記のアルゴリズムを使用してデータベース内のすべての記事の類似性を比較し、最も類似した N 件の記事を取得します。記事がおすすめです。
実装プロセス
最初のTAGSの取得
記事内の高頻度単語からTF-IDFアルゴリズムにより記事のTAGSを抽出し、N中国語の記事には中国語の単語分割の問題もあります。仮想ホストなので、Python を使用して (Python を使うのはとても美味しいです)、単語分割を完了するプログラムをローカルで書きました。すべての記事、単語頻度統計、タグを生成し、サーバーのデータベースに書き戻します。この記事は推奨アルゴリズムの作成に関するものであるため、単語の分割と TAGS の確立の部分については詳しく説明しません。また、システムが異なれば TAGS を確立する方法も異なります。
2 番目の TAGS の保存
TAGS
タグを保存する 2 つのテーブルを作成し、すべてのタグの名前を保存するために使用します
+-------+------------+------+-----+---------+-------+ | Field | Type | Null | Key | Default | Extra | +-------+------------+------+-----+---------+-------+ | tag | text | YES | | NULL | | | count | bigint(20) | YES | | NULL | | | tagid | int(11) | NO | PRI | 0 | | +-------+------------+------+-----+---------+-------+
tag_mapタグと記事の反映関係を作成します。
+-----------+------------+------+-----+---------+-------+ | Field | Type | Null | Key | Default | Extra | +-----------+------------+------+-----+---------+-------+ | id | bigint(20) | NO | PRI | 0 | | | articleid | bigint(20) | YES | | NULL | | | tagid | int(11) | YES | | NULL | | +-----------+------------+------+-----+---------+-------+
tag_map に格納されるデータは次のようになります:
+----+-----------+-------+ | id | articleid | tagid | +----+-----------+-------+ | 1 | 776 | 589 | | 2 | 776 | 471 | | 3 | 776 | 1455 | | 4 | 776 | 1287 | | 5 | 776 | 52 | | 6 | 777 | 1386 | | 7 | 777 | 588 | | 8 | 777 | 109 | | 9 | 777 | 603 | | 10 | 777 | 1299 | +----+-----------+-------+
実際、同様の推奨事項を作成する場合、tagid とタグ名が 1 つにまとめられているため、tag_map テーブルを使用するだけで済みます。対一対応。
具体的なコーディング
1. すべての記事に対応する TAGID を取得します
mysql> select articleid, GROUP_CONCAT(tagid) as tags from tag_map GROUP BY articleid; +-----------+--------------------------+ | articleid | tags | +-----------+--------------------------+ | 12 | 1178,1067,49,693,1227 | | 13 | 196,2004,2071,927,131 | | 14 | 1945,713,1711,2024,49 | | 15 | 35,119,9,1,1180 | | 16 | 1182,1924,2200,181,1938 | | 17 | 46,492,414,424,620 | | 18 | 415,499,153,567,674 | | 19 | 1602,805,691,1613,194 | | 20 | 2070,1994,886,575,1149 | | 21 | 1953,1961,1534,2038,1393 | +-----------+--------------------------+
上記の SQL を通じて、すべての記事と対応するすべてのタグを一度にクエリできます
PHP では、タグを配列に変換できます。
public function getAllGroupByArticleId(){ //缓存查询数据,因为这个是全表数据,而且不更新文章不会变化,便是每次推荐都要从数据库里获取一次数据,对性能肯定会有影响,所以做个缓存。 if($cache = CacheHelper::getCache()){ return $cache; } $query_result = $this->query('select articleid, GROUP_CONCAT(tagid) as tags from tag_map GROUP BY articleid'); $result = []; foreach($query_result as $key => $value){ //用articleid 做key ,值是该id下的所有tagID数组。 $result[$value['articleid']] = explode(",",$value['tags']); } CacheHelper::setCache($result, 86400); return $result; }
この結果が返されると、次のステップでは、jaccard 類似性アルゴリズムを適用することがより簡単になります。詳細については、コードを見てみましょう。
/** * [更据指定文章返回相似的文章推荐] * @param $articleid 指定的文章ID * @param $top 要返回的推荐条数 * @return Array 推荐条目数组 */ function getArticleRecommend($articleid, $top = 5){ if($cache = CacheHelper::getCache()){ return $cache; } try{ $articleid = intval($articleid); $m = new TagMapModel(); $all_tags = $m->getAllGroupByArticleId();//调用上面的函数返回所有文章的tags $finded = $all_tags[$articleid];//因为上面是包含所有文章了,所以肯定包含了当前文章。 unset($all_tags[$articleid]);//把当前文章从数组中删除,不然自己和自己肯定是相似度最高了。 $jaccard_arr = []; //用于存相似度 foreach ($all_tags as $key => $value) { $intersect =array_intersect($finded, $value); //计算交集 $union = array_unique(array_merge($finded, $value)); //计算并集 $jaccard_arr[$key] = (float)(count($intersect) / count($union)); } arsort($jaccard_arr); //按相似度排序,最相似的排最前面 $jaccard_keys = array_keys($jaccard_arr);//由于数组的key就是文章id,所以这里把key取出来就可以了 array_splice($jaccard_keys, $top);//获取前N条推荐 //到这里我们就已经得到了,最相似N篇文章的ID了,接下去的工作就是通过这几个ID,从数据库里把相关信息,查询出来就可以了 $articleModels = new \Api\Model\ArticleModel(); $recommendArticles = $articleModels->getRecommendByTag($jaccard_keys); CacheHelper::setCache($recommendArticles, 604800); //缓存7天 return $recommendArticles; } catch (\Exception $e) { throw new \Exception("获取推荐文章错误"); } }
関連する推奨事項:
以上がタグに基づいたコンテンツレコメンデーションを実装する方法(コード)の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ストアドプロシージャは、パフォーマンスを向上させ、複雑な操作を簡素化するためのMySQLのSQLステートメントを事前に拡大します。 1。パフォーマンスの改善:最初のコンピレーションの後、後続の呼び出しを再コンパイルする必要はありません。 2。セキュリティの改善:許可制御を通じてデータテーブルアクセスを制限します。 3.複雑な操作の簡素化:複数のSQLステートメントを組み合わせて、アプリケーションレイヤーロジックを簡素化します。

MySQLクエリキャッシュの実用的な原則は、選択クエリの結果を保存することであり、同じクエリが再度実行されると、キャッシュされた結果が直接返されます。 1)クエリキャッシュはデータベースの読み取りパフォーマンスを改善し、ハッシュ値を使用してキャッシュされた結果を見つけます。 2)単純な構成、mysql構成ファイルでquery_cache_typeとquery_cache_sizeを設定します。 3)SQL_NO_CACHEキーワードを使用して、特定のクエリのキャッシュを無効にします。 4)高周波更新環境では、クエリキャッシュがパフォーマンスボトルネックを引き起こし、パラメーターの監視と調整を通じて使用するために最適化する必要がある場合があります。

MySQLがさまざまなプロジェクトで広く使用されている理由には、次のものがあります。1。複数のストレージエンジンをサポートする高性能とスケーラビリティ。 2。使いやすく、メンテナンス、シンプルな構成とリッチツール。 3。豊富なエコシステム、多数のコミュニティとサードパーティのツールサポートを魅了します。 4。複数のオペレーティングシステムに適したクロスプラットフォームサポート。

MySQLデータベースをアップグレードする手順には次のものがあります。1。データベースをバックアップします。2。現在のMySQLサービスを停止します。3。MySQLの新しいバージョンをインストールします。アップグレードプロセス中に互換性の問題が必要であり、Perconatoolkitなどの高度なツールをテストと最適化に使用できます。

MySQLバックアップポリシーには、論理バックアップ、物理バックアップ、増分バックアップ、レプリケーションベースのバックアップ、クラウドバックアップが含まれます。 1. Logical BackupはMySqldumpを使用してデータベースの構造とデータをエクスポートします。これは、小さなデータベースとバージョンの移行に適しています。 2.物理バックアップは、データファイルをコピーすることで高速かつ包括的ですが、データベースの一貫性が必要です。 3.インクリメンタルバックアップは、バイナリロギングを使用して変更を記録します。これは、大規模なデータベースに適しています。 4.レプリケーションベースのバックアップは、サーバーからバックアップすることにより、生産システムへの影響を減らします。 5. Amazonrdsなどのクラウドバックアップは自動化ソリューションを提供しますが、コストと制御を考慮する必要があります。ポリシーを選択するときは、データベースサイズ、ダウンタイム許容度、回復時間、および回復ポイントの目標を考慮する必要があります。

mysqlclusteringenhancesdatabaserobustnessnessnessnessnessnistandistributiondistributingdataacrossmultiplenodes.itesthendbenginefordatareplication andfaulttolerance、保証highavailability.setupinvolvesconfiguringmanagement、data、ssqlnodes、carefulmonitoringringandpe

MySQLのデータベーススキーマ設計の最適化は、次の手順を通じてパフォーマンスを改善できます。1。インデックス最適化:一般的なクエリ列にインデックスを作成し、クエリのオーバーヘッドのバランスをとり、更新を挿入します。 2。テーブル構造の最適化:正規化または反通常化によりデータ冗長性を削減し、アクセス効率を改善します。 3。データ型の選択:Varcharの代わりにINTなどの適切なデータ型を使用して、ストレージスペースを削減します。 4。パーティション化とサブテーブル:大量のデータボリュームの場合、パーティション化とサブテーブルを使用してデータを分散させてクエリとメンテナンスの効率を改善します。

tooptimizemysqlperformance、soflowthesesteps:1)properindexingtospeedupqueries、2)useexplaintoanalyzeandoptimize Queryperformance、3)AductServerContingSettingStingsinginginnodb_buffer_pool_sizeandmax_connections、4)


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

SecLists
SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

SublimeText3 中国語版
中国語版、とても使いやすい

Dreamweaver Mac版
ビジュアル Web 開発ツール

ホットトピック









