この記事の内容は、Python マルチスレッド共有グローバル変数の実装コードに関するもので、一定の参考値があり、困っている人は参考にしていただければ幸いです。
グローバル変数は、プロセス内のすべてのスレッドで共有されます。ただし、グローバル変数をマルチスレッドで変更すると、変数の値が混乱する可能性があります。
例: 同じプロセス内のすべてのスレッドがグローバル変数を共有していることを確認します
コード:
#验证同一个进程内的所有线程共享全局变量 from threading import Thread import time g_num=1000 def work1(): global g_num g_num+=3 print("work1----num:",g_num) def work2(): global g_num print("work2---num:",g_num) if __name__ == '__main__': print("start---num:",g_num) t1=Thread(target=work1) t1.start() #故意停顿一秒,以保证线程1执行完成 time.sleep(1) t2=Thread(target=work2) t2.start()
結果:
start---num: 1000 work1----num: 1003 work2---num: 1003
関連推奨事項 :
マルチスレッドでの Python クラス変数の問題の共有と解放
Python マルチスレッドのスレッド間での変数の共有の問題について調べてください。プロセスプログラミング
以上がPython マルチスレッド共有グローバル変数の実装コードの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

はい、youcanconcatenateListsusingingaloopinpython.1)useSeparateloopsforeachlisttoeditemstoaresultlist.2)useanestededLooptoAverMultiplElistsForomerConciseapproach.3)applylogingduringConcateNation for forteringEnlumbers

CONCATENATINGLISSTINPYTHONARE:1)theExtend()MethodForin-PlaceModification、2)itertools.chain()formeMoryeficiency withlaredatasets.theextend()MethodModifiestheoriginallist、MakingMemory-efficitientButReisifRecurityifpRESPRESRINVINING

Pythonloopsは、forloopsealforsecences andwhilelcondition basedrepetition.bestPracticesInvolveを使用して、Pythonloopsincludeを使用します

pythonisbothcompiledinterted.whenyourunapythonscript、itisfirstcompiledintobytecode、これはdenepythonvirtualmachine(pvm).thishybridapproaChallowsforplatform-platform-denodent-codebutcututicut。

Pythonは厳密に行ごとの実行ではありませんが、最適化され、インタープレーターメカニズムに基づいて条件付き実行です。インタープリターは、コードをPVMによって実行されるBytecodeに変換し、定数式または最適化ループを事前促進する場合があります。これらのメカニズムを理解することで、コードを最適化し、効率を向上させることができます。

Pythonに2つのリストを接続する多くの方法があります。1。オペレーターを使用しますが、これはシンプルですが、大きなリストでは非効率的です。 2。効率的ですが、元のリストを変更する拡張メソッドを使用します。 3。=演算子を使用します。これは効率的で読み取り可能です。 4。itertools.chain関数を使用します。これはメモリ効率が高いが、追加のインポートが必要です。 5。リストの解析を使用します。これはエレガントですが、複雑すぎる場合があります。選択方法は、コードのコンテキストと要件に基づいている必要があります。

Pythonリストをマージするには多くの方法があります。1。オペレーターを使用します。オペレーターは、シンプルですが、大きなリストではメモリ効率的ではありません。 2。効率的ですが、元のリストを変更する拡張メソッドを使用します。 3. Itertools.chainを使用します。これは、大規模なデータセットに適しています。 4.使用 *オペレーター、1つのコードで小規模から中型のリストをマージします。 5. numpy.concatenateを使用します。これは、パフォーマンス要件の高い大規模なデータセットとシナリオに適しています。 6.小さなリストに適したが、非効率的な追加方法を使用します。メソッドを選択するときは、リストのサイズとアプリケーションのシナリオを考慮する必要があります。

compiledlanguagesOfferspeedandsecurity、foredlanguagesprovideeaseofuseandportability.1)compiledlanguageslikec arefasterandsecurebuthavelOnderdevelopmentsplat dependency.2)


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

メモ帳++7.3.1
使いやすく無料のコードエディター

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

ZendStudio 13.5.1 Mac
強力な PHP 統合開発環境
