ホームページ >ウェブフロントエンド >jsチュートリアル >js_前順、中順、後順での二分木走査のための3つのアルゴリズム_単純な二分木の実装
二分木の確立と走査について、この記事では詳細に紹介し、事前二分木走査、順序二分木走査、事後二分木走査のアルゴリズムについても説明します。コードは次のとおりです。誰でもわかるように引用します。理解しやすいように、この記事の導入は二分木と二分探索木から始める必要があります。 apache php mysql
ノード: ツリー内の各要素をノードと呼びます。
ルートノード: 全体の頂点に位置するノードツリー、上の図 5 に示すように、親ノードがありません
子ノード: 他のノードの子孫
リーフ ノード: 図 3 8 24 に示すように、子ノードのない要素はリーフ ノードと呼ばれます
バイナリ ツリー: バイナリツリーはデータ構造であり、その組織関係は自然界の木のようなものです。公式言語での定義は次のとおりです。これは、空であるか、ルートと呼ばれる要素と、それぞれ左サブツリーおよび右サブツリーと呼ばれる 2 つの素のバイナリ ツリーで構成される有限要素のセットです。
二分探索ツリー:
二分探索ツリーは二分探索ツリー (BST) とも呼ばれ、左側のノードには親ノードよりも小さい値を、右側のノードには親ノードよりも大きい値のみを格納できます。上の図は二分探索木を示しています。
まず、二分探索ツリーを表すクラスを作成します。その中にノードを作成するための Node クラスが必要です
function BinarySearchTree () { var Node = function(key) { this.key = key, this.left = null, this.right = null } var root = null }
いくつかのメソッドも必要です:
insert(key) 新しいキーを挿入します。
inOrderTraverse() はツリーの順序トラバーサルを実行し、結果を出力します
preOrderTraverse() はツリーの前順序トラバースを実行し、結果を出力します
postOrderTraverse() は事後順序トラバーサルを実行しますツリーの値を取得し、結果を出力します
search(key) はツリー内のキーを検索し、存在する場合は true を返し、存在しない場合は false を返します
findMin() は、キーの最小値を返しますTree
findMax() はツリーを返します
remove(key) の最大値はツリー内のキーを削除します
はツリーに新しいキーを挿入しますホームページでは、新しいノードの Class インスタンスを表す Node を作成する必要があるため、Node クラスを新規作成し、挿入する必要があるキー値を渡す必要があります。これにより、左右のノードが null の新しいノードに自動的に初期化されます。まず、ツリーが空であるかどうかを判断する必要があります。空でない場合は、補助メソッドの insertNode() メソッドを呼び出します。ルートノードと新しいノードを
this.insert = function(key) { var newNode = new Node(key) if(root === null) { root = newNode } else { insertNode(root, newNode) } }に追加します
var insertNode = function(node, newNode) { if (newNode.key <= node.key) { if (node.left === null) { node.left = newNode }else { insertNode(node.left, newNode) } }else { if (node.right === null) { node.right = newNode }else { insertNode(node.right, newNode) } } }insertNode()メソッドを定義します。このメソッドはそれ自体を再帰的に呼び出して、新しく追加されたノードの適切な位置を見つけます
this.inOrderTraverse = function() { inOrderTraverseNode(root) }インオーダートラバーサルメソッドを完了します順序トラバーサルには、各ノードをトラバースするために再帰的に自身を呼び出すことができる inOrderTraverseNode(node) メソッドが必要です
var inOrderTraverseNode = function(node) { if (node !== null) { inOrderTraverseNode(node.left) console.log(node.key) inOrderTraverseNode(node.right) } }このメソッドは、各ノードのキー値を出力するには、再帰的な終了条件が必要です - 受信ノードが null かどうかを確認しますそうでない場合は、再帰的に自分自身を呼び出してノードの左右のノードを確認します。これも非常に簡単に実装できます。 、わずかな変更で、事前順序トラバーサルと事後順序トラバーサルを実現できます
上記のコード:
// 实现先序遍历 this.preOrderTraverse = function() { preOrderTraverseNode(root) } var preOrderTraverseNode = function(node) { if (node !== null) { console.log(node.key) preOrderTraverseNode(node.left) preOrderTraverseNode(node.right) } } // 实现后序遍历 this.postOrderTraverse = function() { postOrderTraverseNode(root) } var postOrderTraverseNode = function(node) { if (node !== null) { postOrderTraverseNode(node.left) postOrderTraverseNode(node.right) console.log(node.key) } }
最初にテストをしてみましょう
完全なコードは次のとおりです:
function BinarySearchTree () { var Node = function(key) { this.key = key, this.left = null, this.right = null } var root = null //插入节点 this.insert = function(key) { var newNode = new Node(key) if(root === null) { root = newNode } else { insertNode(root, newNode) } } var insertNode = function(node, newNode) { if (newNode.key <= node.key) { if (node.left === null) { node.left = newNode }else { insertNode(node.left, newNode) } }else { if (node.right === null) { node.right = newNode }else { insertNode(node.right, newNode) } } } //实现中序遍历 this.inOrderTraverse = function() { inOrderTraverseNode(root) } var inOrderTraverseNode = function(node) { if (node !== null) { inOrderTraverseNode(node.left) console.log(node.key) inOrderTraverseNode(node.right) } } // 实现先序遍历 this.preOrderTraverse = function() { preOrderTraverseNode(root) } var preOrderTraverseNode = function(node) { if (node !== null) { console.log(node.key) preOrderTraverseNode(node.left) preOrderTraverseNode(node.right) } } // 实现后序遍历 this.postOrderTraverse = function() { postOrderTraverseNode(root) } var postOrderTraverseNode = function(node) { if (node !== null) { postOrderTraverseNode(node.left) postOrderTraverseNode(node.right) console.log(node.key) } } }
は新しいノードを追加して走査するメソッドを実際に完了しました。テストしてみましょう:
var arr = [9,6,3,8,12,15]
arr の各要素を二分探索ツリーに適宜挿入し、結果を出力します
var tree = new BinarySearchTree() arr.map(item => { tree.insert(item) }) tree.inOrderTraverse() tree.preOrderTraverse() tree.postOrderTraverse()
コードを実行したら、まずノードを挿入した後の全体の構造を見てみましょう ツリーの状況:
出力結果 In-order traversal:<p>3<img src="https://img.php.cn//upload/image/461/709/758/1533281913515198.png" title="1533281913515198.png" alt="js_前順、中順、後順での二分木走査のための3つのアルゴリズム_単純な二分木の実装">6</p>8<p>9</p>12<p>15<code><br>3<br>6<br>8<br>9<br>12<br>15<br>
先序遍历:<br>9<br>6<br>3<br>8<br>12<br>15<br>
后序遍历:<br>3<br>8<br>6<br>15<br>12<br>9<br>
Pre-order traversal:
8
1215
🎜🎜Postorder traversal:🎜3🎜8🎜6🎜15🎜12🎜9🎜
🎜🎜明らかに、結果は期待どおりなので、次を使用します上記の JavaScript コードは、ツリーへのノードの挿入と 3 つのトラバーサル メソッドを実装しています。同時に、二分探索ツリーでは、左端のノードの値が最も小さく、右端のノードの値が最大であることがわかります。 , したがって、二分探索木は最大値と最小値を簡単に取得できます🎜🎜最小値と最大値を見つけるにはどうすればよいですか🎜🎜?実際には、ルート ノードを minNode/または maxNode メソッドに渡し、ループを通じて左側 (minNode)/右側 (maxNode) のノードが null であることを判断するだけです🎜🎜 実装コード: 🎜// 查找最小值 this.findMin = function() { return minNode(root) } var minNode = function(node) { if (node) { while (node && node.left !== null) { node = node.left } return node.key } return null } // 查找最大值 this.findMax = function() { return maxNode(root) } var maxNode = function (node) { if(node) { while (node && node.right !== null) { node =node.right } return node.key } return null }
this.search = function(key) { return searchNode(root, key) }
同样,实现它需要定义一个辅助方法,这个方法首先会检验node的合法性,如果为null,直接退出,并返回fasle。如果传入的key比当前传入node的key值小,它会继续递归查找node的左侧节点,反之,查找右侧节点。如果找到相等节点,直接退出,并返回true
var searchNode = function(node, key) { if (node === null) { return false } if (key < node.key) { return searchNode(node.left, key) }else if (key > node.key) { return searchNode(node.right, key) }else { return true } }
移除节点的实现情况比较复杂,它会有三种不同的情况:
需要移除的节点是一个叶子节点
需要移除的节点包含一个子节点
需要移除的节点包含两个子节点
和实现搜索指定节点一元,要移除某个节点,必须先找到它所在的位置,因此移除方法的实现中部分代码和上面相同:
// 移除节点 this.remove = function(key) { removeNode(root,key) } var removeNode = function(node, key) { if (node === null) { return null } if (key < node.key) { node.left = removeNode(node.left, key) return node }else if(key > node.key) { node.right = removeNode(node.right,key) return node }else{ //需要移除的节点是一个叶子节点 if (node.left === null && node.right === null) { node = null return node } //需要移除的节点包含一个子节点 if (node.letf === null) { node = node.right return node }else if (node.right === null) { node = node.left return node } //需要移除的节点包含两个子节点 var aux = findMinNode(node.right) node.key = aux.key node.right = removeNode(node.right, axu.key) return node } } var findMinNode = function(node) { if (node) { while (node && node.left !== null) { node = node.left } return node } return null }
其中,移除包含两个子节点的节点是最复杂的情况,它包含左侧节点和右侧节点,对它进行移除主要需要三个步骤:
需要找到它右侧子树中的最小节点来代替它的位置
将它右侧子树中的最小节点移除
将更新后的节点的引用指向原节点的父节点
有点绕儿,但必须这样,因为删除元素后的二叉搜索树必须保持它的排序性质
tree.remove(8) tree.inOrderTraverse()
打印结果:
3<br>6<br>9<br>12<br>15<br>
8 这个节点被成功删除了,但是对二叉查找树进行中序遍历依然是保持排序性质的
到这里,一个简单的二叉查找树就基本上完成了,我们为它实现了,添加、查找、删除以及先中后三种遍历方法
但是实际上这样的二叉查找树是存在一些问题的,当我们不断的添加更大/更小的元素的时候,会出现如下情况:
tree.insert(16) tree.insert(17) tree.insert(18)
来看看现在整颗树的情况:
看图片容易得出它是不平衡的,这又会引出平衡树的概念,要解决这个问题,还需要更复杂的实现,例如:AVL树,红黑树 哎,之后再慢慢去学习吧
相关文章:
以上がjs_前順、中順、後順での二分木走査のための3つのアルゴリズム_単純な二分木の実装の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。