ホームページ >バックエンド開発 >Python チュートリアル >Numpy 配列データの追加、削除、変更、およびクエリ
この記事では、Numpy 配列データの追加、削除、変更、クエリを主に紹介します。これで、必要な友達が参照できるようになります。
追加。削除、変更、確認する方法はたくさんありますが、ここでは一般的に使用される方法をいくつか紹介します。
>>> import numpy as np >>> a = np.array([[1,2],[3,4],[5,6]])#创建3行2列二维数组。 >>> a array([[1, 2], [3, 4], [5, 6]]) >>> a = np.zeros(6)#创建长度为6的,元素都是0一维数组 >>> a = np.zeros((2,3))#创建3行2列,元素都是0的二维数组 >>> a = np.ones((2,3))#创建3行2列,元素都是1的二维数组 >>> a = np.empty((2,3)) #创建3行2列,未初始化的二维数组 >>> a = np.arange(6)#创建长度为6的,元素都是0一维数组array([0, 1, 2, 3, 4, 5]) >>> a = np.arange(1,7,1)#结果与np.arange(6)一样。第一,二个参数意思是数值从1〜6,不包括7.第三个参数表步长为1. a = np.linspace(0,10,7) # 生成首位是0,末位是10,含7个数的等差数列[ 0. 1.66666667 3.33333333 5. 6.66666667 8.33333333 10. ] a = np.logspace(0,4,5)#用于生成首位是10**0,末位是10**4,含5个数的等比数列。[ 1.00000000e+00 1.00000000e+01 1.00000000e+02 1.00000000e+03 1.00000000e+04]
increase
>>> a = np.array([[1,2],[3,4],[5,6]])
>>> b = np.array([[10,20],[30,40],[50,60]])
>>> np.vstack((a,b))
array([[ 1, 2],
[ 3, 4],
[ 5, 6],
[10, 20],
[30, 40],
[50, 60]])
>>> np.hstack((a,b))
array([[ 1, 2, 10, 20],
[ 3, 4, 30, 40],
[ 5, 6, 50, 60]])
異なる次元の配列の直接加算は明らかに許可されていません。ただし、n 列ベクトルと m 列行ベクトルを使用して n × m 行列を構築できます
>>> a = np.array([[1],[2]]) >>> a array([[1], [2]]) >>> b=([[10,20,30]])#生成一个list,注意,不是np.array。 >>> b [[10, 20, 30]] >>> a+b array([[11, 21, 31], [12, 22, 32]]) >>> c = np.array([10,20,30]) >>> c array([10, 20, 30]) >>> c.shape (3,) >>> a+c array([[11, 21, 31], [12, 22, 32]])
check
>>> a
array([[1, 2],
[3, 4],
[5, 6]])
>>> a[0] # array([1, 2])
>>> a[0][1]#2
>>> a[0,1]#2
>>> b = np.arange(6)#array([0, 1, 2, 3, 4, 5])
>>> b[1:3]#右边开区间array([1, 2])
>>> b[:3]#左边默认为 0array([0, 1, 2])
>>> b[3:]#右边默认为元素个数array([3, 4, 5])
>>> b[0:4:2]#下标递增2array([0, 2])
np を使用します。 (条件、x、y)、最初のパラメーターはブール配列、2 番目のパラメーターと 3 番目のパラメーターはスカラーまたは配列にすることができます。
cond = numpy.array([True,False,True,False]) a = numpy.where(cond,-2,2)# [-2 2 -2 2] cond = numpy.array([1,2,3,4]) a = numpy.where(cond>2,-2,2)# [ 2 2 -2 -2] b1 = numpy.array([-1,-2,-3,-4]) b2 = numpy.array([1,2,3,4]) a = numpy.where(cond>2,b1,b2) # 长度须匹配# [1,2,-3,-4]
Change
>>> a = np.array([[1,2],[3,4],[5,6]])
>>> a[0] = [11,22]#修改第一行数组[1,2]为[11,22]。
>>> a[0][0] = 111#修改第一个元素为111,修改后,第一个元素“1”改为“111”。
>>> a = np.array([[1,2],[3,4],[5,6]])
>>> b = np.array([[10,20],[30,40],[50,60]])
>>> a+b #加法必须在两个相同大小的数组键间运算。
array([[11, 22],
[33, 44],
[55, 66]])
異なる次元の配列の直接加算は明らかに許可されていません。しかし、n 列ベクトルと m 列行ベクトルを使用して、n×m 行列
>>> a = np.array([[1],[2]]) >>> a array([[1], [2]]) >>> b=([[10,20,30]])#生成一个list,注意,不是np.array。 >>> b [[10, 20, 30]] >>> a+b array([[11, 21, 31], [12, 22, 32]]) >>> c = np.array([10,20,30]) >>> c array([10, 20, 30]) >>> c.shape (3,) >>> a+c array([[11, 21, 31], [12, 22, 32]])
配列と数値の加算、減算、乗算、除算の演算を構築することができます。これはブロードキャストと同等です。 、この操作を各要素にブロードキャストします。
>>> a = np.array([[1,2],[3,4],[5,6]]) >>> a*2#相当于a中各个元素都乘以2.类似于广播。 array([[ 2, 4], [ 6, 8], [10, 12]]) >>> a**2 array([[ 1, 4], [ 9, 16], [25, 36]]) >>> a>3 array([[False, False], [False, True], [ True, True]]) >>> a+3 array([[4, 5], [6, 7], [8, 9]]) >>> a/2 array([[0.5, 1. ], [1.5, 2. ], [2.5, 3. ]])
削除
方法 1:
a=a[0] などの検索メソッドを使用します。操作後、a には 1 行だけが残ります。 。
>>> a = np.array([[1,2],[3,4],[5,6]]) >>> a[0] array([1, 2])
方法 2:
>>> a = np.array([[1,2],[3,4],[5,6]])
>>> np.delete(a,1,axis = 0)#删除a的第二行。
array([[1, 2],
[5, 6]])
>>> np.delete(a,(1,2),0)#删除a的第二,三行。
array([[1, 2]])
>>> np.delete(a,1,axis = 1)#删除a的第二列。
array([[1],
[3],
[5]])
方法 3:
最初に分割し、次にスライス a=a[0] に従って値を割り当てます。
>>> a = np.array([[1,2],[3,4],[5,6]]) >>> np.hsplit(a,2)#水平分割(搞不懂,明明是垂直分割嘛?) [array([[1], [3], [5]]), array([[2], [4], [6]])] >>> np.split(a,2,axis = 1)#与np.hsplit(a,2)效果一样。 >>> np.vsplit(a,3) [array([[1, 2]]), array([[3, 4]]), array([[5, 6]])] >>> np.split(a,3,axis = 0)#与np.vsplit(a,3)效果一样。
関連する推奨事項:
numpy でテキスト形式でデータを保存および読み取る方法
以上がNumpy 配列データの追加、削除、変更、およびクエリの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。