この記事では主に Tensorflow での tf.train.batch 関数の使用方法を紹介し、参考として提供します。一緒に見に来てください
ここ2日間、tensorflowでデータを読み込むためのキューを見てきましたが、正直、非常にわかりにくいです。おそらく私にはこの分野の経験がなく、最初は Theano を使用してすべてを自分で書きました。この 2 日間、書類や関連情報を検討した後、私は中国の後輩たちとも相談しました。今日はちょっとした気持ちがあります。簡単に言うと、計算グラフはパイプラインからデータを読み込みます。入力パイプラインは既成のメソッドを使用し、読み込みにも同じメソッドが使用されます。複数のスレッドを使用するときにパイプからのデータの読み取りが混乱しないようにするために、この時点での読み取り時にスレッド管理関連の操作が必要です。今日、私はラボで簡単な操作を行いました。それは、順序付けされたデータを与え、それが順序付けされているかどうかを確認するというものでした。それで、コードを直接与えました。メソッド。デフォルトはシャッフルです。
それに、このコードにコメントしたいと思います
1: このメソッドが指定されたエポックを実行するときに、slice_input_Producer メソッドが動作するエポック数を制御するパラメーター 'num_epochs' があります。 OutOfRangeRrror は、トレーニング エポックの制御に役立つと思います。2: このメソッドの出力は 1 つの画像であり、この 1 つの画像を正規化やクロップなどの tensorflow API で操作できます。この単一の画像がバッチ メソッドにフィードされると、トレーニングまたはテスト用の画像のバッチが受信されます。[例、ラベル] はサンプルとサンプル ラベルを表します。サンプルおよびサンプルラベルになります。batch_size は、返されるバッチサンプルセット内のサンプルの数です。容量はキュー内の容量です。これは主に
上記の関数の戻り値はすべてバッチのサンプルとサンプルラベルですが、1 つは順序どおりで、もう 1 つはランダムです
関連推奨事項:
tensorflow フラグを使用してコマンドラインパラメーターを定義する方法
Tensorflow のセーバーの使用法
以上がTensorflow の tf.train.batch 関数についての詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Numpyを使用して多次元配列を作成すると、次の手順を通じて実現できます。1)numpy.array()関数を使用して、np.array([[1,2,3]、[4,5,6]])などの配列を作成して2D配列を作成します。 2)np.zeros()、np.ones()、np.random.random()およびその他の関数を使用して、特定の値で満たされた配列を作成します。 3)アレイの形状とサイズの特性を理解して、サブアレイの長さが一貫していることを確認し、エラーを回避します。 4)np.reshape()関数を使用して、配列の形状を変更します。 5)コードが明確で効率的であることを確認するために、メモリの使用に注意してください。

BroadcastinginNumPyisamethodtoperformoperationsonarraysofdifferentshapesbyautomaticallyaligningthem.Itsimplifiescode,enhancesreadability,andboostsperformance.Here'showitworks:1)Smallerarraysarepaddedwithonestomatchdimensions.2)Compatibledimensionsare

Forpythondatastorage、chooseLists forfficability withmixeddatypes、array.arrayformemory-efficienthogeneousnumericaldata、およびnumpyArrays foradvancednumericalcomputing.listSareversatilebuteficient efficient forlargeNumericaldatates;

pythonlistsarebetterthanarrays formangingdiversedatypes.1)listscanholdelementsofdifferenttypes、2)adearedditionsandremovals、3)theeofferintutiveoperation likeslicing、but4)theearlessememory-effice-hemory-hemory-hemory-hemory-hemory-adlower-dslorededatas。

toaccesselementsinapythonarray、useindexing:my_array [2] Accessesthirderement、Returning3.pythonuseszero basedIndexing.1)usepositiveandnegativeindexing:my_list [0] forteefirstelement、my_list [-1] exterarast.2)

記事では、構文のあいまいさのためにPythonにおけるタプル理解の不可能性について説明します。 Tupple式を使用してTuple()を使用するなどの代替は、Tuppleを効率的に作成するためにお勧めします。(159文字)

この記事では、Pythonのモジュールとパッケージ、その違い、および使用について説明しています。モジュールは単一のファイルであり、パッケージは__init__.pyファイルを備えたディレクトリであり、関連するモジュールを階層的に整理します。

記事では、PythonのDocstrings、それらの使用、および利点について説明します。主な問題:コードのドキュメントとアクセシビリティに関するドキュストリングの重要性。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

SublimeText3 英語版
推奨: Win バージョン、コードプロンプトをサポート!

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

ホットトピック









