検索
ホームページバックエンド開発Python チュートリアルTensorflow の tf.train.batch 関数について

Tensorflow の tf.train.batch 関数について

Apr 24, 2018 pm 02:13 PM
tensorflow関数

この記事では主に Tensorflow での tf.train.batch 関数の使用方法を紹介し、参考として提供します。一緒に見に来てください

ここ2日間、tensorflowでデータを読み込むためのキューを見てきましたが、正直、非常にわかりにくいです。おそらく私にはこの分野の経験がなく、最初は Theano を使用してすべてを自分で書きました。この 2 日間、書類や関連情報を検討した後、私は中国の後輩たちとも相談しました。今日はちょっとした気持ちがあります。簡単に言うと、計算グラフはパイプラインからデータを読み込みます。入力パイプラインは既成のメソッドを使用し、読み込みにも同じメソッドが使用されます。複数のスレッドを使用するときにパイプからのデータの読み取りが混乱しないようにするために、この時点での読み取り時にスレッド管理関連の操作が必要です。今日、私はラボで簡単な操作を行いました。それは、順序付けされたデータを与え、それが順序付けされているかどうかを確認するというものでした。それで、コードを直接与えました。メソッド。デフォルトはシャッフルです。

それに、このコードにコメントしたいと思います

1: このメソッドが指定されたエポックを実行するときに、slice_input_Producer メソッドが動作するエポック数を制御するパラメーター 'num_epochs' があります。 OutOfRangeRrror は、トレーニング エポックの制御に役立つと思います。

2: このメソッドの出力は 1 つの画像であり、この 1 つの画像を正規化やクロップなどの tensorflow API で操作できます。この単一の画像がバッチ メソッドにフィードされると、トレーニングまたはテスト用の画像のバッチが受信されます。[例、ラベル] はサンプルとサンプル ラベルを表します。サンプルおよびサンプルラベルになります。batch_size は、返されるバッチサンプルセット内のサンプルの数です。容量はキュー内の容量です。これは主に

tf.train.shuffle_batch([example, label],batch_size=batch_size,capacity=capacity,min_after_dequeue)の順にバッチに結合されます。ここでのパラメータは上記と同じ意味を持ちます。違いは、パラメータ min_after_dequeue です。このパラメータは、capacity パラメータの値よりも小さいことを確認する必要があります。そうでないと、エラーが発生します。これは、キュー内の要素がそれよりも大きい場合、不規則なバッチが出力されることを意味します。つまり、この関数の出力結果は、順序どおりに配置されたのではなく、バラバラに配置されたサンプルのバッチです。


上記の関数の戻り値はすべてバッチのサンプルとサンプルラベルですが、1 つは順序どおりで、もう 1 つはランダムです


関連推奨事項:

tensorflow フラグを使用してコマンドラインパラメーターを定義する方法

Tensorflow のセーバーの使用法



以上がTensorflow の tf.train.batch 関数についての詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
numpyを使用してマルチディメンシャルアレイをどのように作成しますか?numpyを使用してマルチディメンシャルアレイをどのように作成しますか?Apr 29, 2025 am 12:27 AM

Numpyを使用して多次元配列を作成すると、次の手順を通じて実現できます。1)numpy.array()関数を使用して、np.array([[1,2,3]、[4,5,6]])などの配列を作成して2D配列を作成します。 2)np.zeros()、np.ones()、np.random.random()およびその他の関数を使用して、特定の値で満たされた配列を作成します。 3)アレイの形状とサイズの特性を理解して、サブアレイの長さが一貫していることを確認し、エラーを回避します。 4)np.reshape()関数を使用して、配列の形状を変更します。 5)コードが明確で効率的であることを確認するために、メモリの使用に注意してください。

Numpyアレイの「ブロードキャスト」の概念を説明します。Numpyアレイの「ブロードキャスト」の概念を説明します。Apr 29, 2025 am 12:23 AM

BroadcastinginNumPyisamethodtoperformoperationsonarraysofdifferentshapesbyautomaticallyaligningthem.Itsimplifiescode,enhancesreadability,andboostsperformance.Here'showitworks:1)Smallerarraysarepaddedwithonestomatchdimensions.2)Compatibledimensionsare

データストレージ用のリスト、array.array、およびnumpy配列を選択する方法を説明します。データストレージ用のリスト、array.array、およびnumpy配列を選択する方法を説明します。Apr 29, 2025 am 12:20 AM

Forpythondatastorage、chooseLists forfficability withmixeddatypes、array.arrayformemory-efficienthogeneousnumericaldata、およびnumpyArrays foradvancednumericalcomputing.listSareversatilebuteficient efficient forlargeNumericaldatates;

Pythonリストを使用することが配列を使用するよりも適切であるシナリオの例を挙げてください。Pythonリストを使用することが配列を使用するよりも適切であるシナリオの例を挙げてください。Apr 29, 2025 am 12:17 AM

pythonlistsarebetterthanarrays formangingdiversedatypes.1)listscanholdelementsofdifferenttypes、2)adearedditionsandremovals、3)theeofferintutiveoperation likeslicing、but4)theearlessememory-effice-hemory-hemory-hemory-hemory-hemory-adlower-dslorededatas。

Pythonアレイ内の要素にどのようにアクセスしますか?Pythonアレイ内の要素にどのようにアクセスしますか?Apr 29, 2025 am 12:11 AM

toaccesselementsinapythonarray、useindexing:my_array [2] Accessesthirderement、Returning3.pythonuseszero basedIndexing.1)usepositiveandnegativeindexing:my_list [0] forteefirstelement、my_list [-1] exterarast.2)

Pythonでタプルの理解が可能ですか?はいの場合、どうしてそうでない場合は?Pythonでタプルの理解が可能ですか?はいの場合、どうしてそうでない場合は?Apr 28, 2025 pm 04:34 PM

記事では、構文のあいまいさのためにPythonにおけるタプル理解の不可能性について説明します。 Tupple式を使用してTuple()を使用するなどの代替は、Tuppleを効率的に作成するためにお勧めします。(159文字)

Pythonのモジュールとパッケージとは何ですか?Pythonのモジュールとパッケージとは何ですか?Apr 28, 2025 pm 04:33 PM

この記事では、Pythonのモジュールとパッケージ、その違い、および使用について説明しています。モジュールは単一のファイルであり、パッケージは__init__.pyファイルを備えたディレクトリであり、関連するモジュールを階層的に整理します。

PythonのDocstringとは何ですか?PythonのDocstringとは何ですか?Apr 28, 2025 pm 04:30 PM

記事では、PythonのDocstrings、それらの使用、および利点について説明します。主な問題:コードのドキュメントとアクセシビリティに関するドキュストリングの重要性。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

SublimeText3 英語版

SublimeText3 英語版

推奨: Win バージョン、コードプロンプトをサポート!

SublimeText3 Linux 新バージョン

SublimeText3 Linux 新バージョン

SublimeText3 Linux 最新バージョン

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

AtomエディタMac版ダウンロード

AtomエディタMac版ダウンロード

最も人気のあるオープンソースエディター