ここで、2 次元配列のローカル ピーク値を見つけるための Python の分割統治法に関する記事を共有します。これは優れた参考値なので、皆さんのお役に立てれば幸いです。一緒に見に来てください
質問の意味は、大まかに言うと、n*m 個の 2 次元配列から局所的なピークを見つけることです。ピーク値は、隣接する 4 つの要素よりも大きい必要があります (配列境界の外側は負の無限大とみなされます)。たとえば、最終的にピーク値 A[j][i] が見つかった場合、A[j][i] になります。 ] > A[j+1][i] && A[j][i] > A[j-1][i] > A[j][i+1] && A[j][i] > A[j][i-1]。このピークの座標と値を返します。
もちろん、最も簡単で直接的な方法は、すべての配列要素を走査して、それらがピーク値であるかどうかを判断することです。時間計算量は O(n^2) です
各行の最大値を見つけるためにもう少し最適化します (最大列のピーク値 (ピーク値を見つけるための特定の方法は 1 次元配列で見つけることができます)、このアルゴリズムの時間計算量は O(logn)
です。ここで説明するのは、複雑度 O(n) のアルゴリズムです。 アルゴリズムのアイデアは次のステップに分かれています。
1. 「田」という単語を見つけます。外側の4つのエッジと中央の縦横2つのエッジ(図の緑色の部分)を含めて、それらの大きさを比較し、最大値の位置を見つけます。 (写真の7)
2. 単語Tianの最大値を見つけた後、それがローカルピークであるかどうかを判断し、そうでない場合はその座標を記録します。見つかった 4 つの隣接する点の値の座標のうちの最大値。座標が位置する象限の範囲を縮小し、次のフィールド文字の比較を続けます
3. 範囲が 3*3 に縮小されると、ローカル ピークが確実に見つかります (または以前に見つかった可能性があります)
なぜ選択した範囲にピークが存在する必要があるかについては、次のように考えることができます。 まず、円が少なくとも 1 つあることがわかっています。円内のすべての要素よりも大きい要素は、この円内に間違いなく 1 つありますか?
少しややこしいかもしれませんが、よく考えれば理解できるはずですし、矛盾による数学的証明を使って証明することもできます。
アルゴリズムを理解したら、次のステップはコードを実装することです。ここで使用する言語は Python です (Python は初めてなので、十分に簡潔でない使用方法があることをご容赦ください)。コード:
import numpy as np def max_sit(*n): #返回最大元素的位置 temp = 0 sit = 0 for i in range(len(n)): if(n[i]>temp): temp = n[i] sit = i return sit def dp(s1,s2,e1,e2): m1 = int((e1-s1)/2)+s1 #row m2 = int((e2-s1)/2)+s2 #col nub = e1-s1 temp = 0 sit_row = 0 sit_col = 0 for i in range(nub): t = max_sit(list[s1][s2+i], #第一排 list[m1][s2+i], #中间排 list[e1][s2+i], #最后排 list[s1+i][s2], #第一列 list[s1+i][m2], #中间列 list[s1+i][e2], #最后列 temp) if(t==6): pass elif(t==0): temp = list[s1][s2+i] sit_row = s1 sit_col = s2+i elif(t==1): temp = list[m1][s2+i] sit_row = m1 sit_col = s2+i elif(t==2): temp = list[e1][s2+i] sit_row = e1 sit_col = s2+i elif(t==3): temp = list[s1+i][s2] sit_row = s1+i sit_row = s2 elif(t==4): temp = list[s1+i][m2] sit_row = s1+i sit_col = m2 elif(t==5): temp = list[s1+i][e2] sit_row = s1+i sit_col = m2 t = max_sit(list[sit_row][sit_col], #中 list[sit_row-1][sit_col], #上 list[sit_row+1][sit_col], #下 list[sit_row][sit_col-1], #左 list[sit_row][sit_col+1]) #右 if(t==0): return [sit_row-1,sit_col-1] elif(t==1): sit_row-=1 elif(t==2): sit_row+=1 elif(t==3): sit_col-=1 elif(t==4): sit_col+=1 if(sit_row<m1): e1 = m1 else: s1 = m1 if(sit_col<m2): e2 = m2 else: s2 = m2 return dp(s1,s2,e1,e2) f = open("demo.txt","r") list = f.read() list = list.split("\n") #对行进行切片 list = ["0 "*len(list)]+list+["0 "*len(list)] #加上下的围墙 for i in range(len(list)): #对列进行切片 list[i] = list[i].split() list[i] = ["0"]+list[i]+["0"] #加左右的围墙 list = np.array(list).astype(np.int32) row_n = len(list) col_n = len(list[0]) ans_sit = dp(0,0,row_n-1,col_n-1) print("找到峰值点位于:",ans_sit) print("该峰值点大小为:",list[ans_sit[0]+1,ans_sit[1]+1]) f.close()
まず第一に、私の入力は txt テキスト ファイルに記述され、文字列は 2 次元配列に変換されます。具体的な変換プロセスは、以前のブログでご覧いただけます - 文字列の変換Pythonの二次元配列に。 (なお、Windows環境で分割リストの末尾が空でない場合は、list.pop()文を追加する必要はありません。)いくつかの変更は、2 次元配列の周囲に「0」の壁を追加したことです。壁を追加すると、ピーク値を判断するときに境界の問題を考慮する必要がなくなります。
max_sit(*n) 関数は、複数の値の中から最大値の位置を見つけてその位置を返すために使用されます。Python の組み込み max 関数は最大値のみを返すことができるため、やはり自分で記述する必要があります。 *n は不定の長さのパラメーターを表します。Tian と Ten を比較するときにこの関数を使用する必要があるため (ピーク値を決定するため)
def max_sit(*n): #返回最大元素的位置 temp = 0 sit = 0 for i in range(len(n)): if(n[i]>temp): temp = n[i] sit = i return sit
dp(s1,s2,e1,e2) 関数内の 4 つのパラメーターstartx、starty、endx、endy として見ることができます。つまり、範囲の左上隅と右下隅の座標値を探します。
m1とm2はそれぞれrowとcolの中間値で、単語「tian」の中央です。
def dp(s1,s2,e1,e2): m1 = int((e1-s1)/2)+s1 #row m2 = int((e2-s1)/2)+s2 #col
最大値を見つけるために3行3列の値を比較します。2次元配列が長方形である必要があることに注意してください。作りました
for i in range(nub): t = max_sit(list[s1][s2+i], #第一排 list[m1][s2+i], #中间排 list[e1][s2+i], #最后排 list[s1+i][s2], #第一列 list[s1+i][m2], #中间列 list[s1+i][e2], #最后列 temp) if(t==6): pass elif(t==0): temp = list[s1][s2+i] sit_row = s1 sit_col = s2+i elif(t==1): temp = list[m1][s2+i] sit_row = m1 sit_col = s2+i elif(t==2): temp = list[e1][s2+i] sit_row = e1 sit_col = s2+i elif(t==3): temp = list[s1+i][s2] sit_row = s1+i sit_row = s2 elif(t==4): temp = list[s1+i][m2] sit_row = s1+i sit_row = m2 elif(t==5): temp = list[s1+i][e2] sit_row = s1+i sit_row = m2
単語Tianの最大値がピーク値であるかどうかを判定し、隣接する最大値が見つからない
t = max_sit(list[sit_row][sit_col], #中 list[sit_row-1][sit_col], #上 list[sit_row+1][sit_col], #下 list[sit_row][sit_col-1], #左 list[sit_row][sit_col+1]) #右 if(t==0): return [sit_row-1,sit_col-1] elif(t==1): sit_row-=1 elif(t==2): sit_row+=1 elif(t==3): sit_col-=1 elif(t==4): sit_col+=1
範囲を狭めて再帰的に解きます
if(sit_row<m1): e1 = m1 else: s1 = m1 if(sit_col<m2): e2 = m2 else: s2 = m2 return dp(s1,s2,e1,e2)
わかりました, コード解析は基本的にここで完了します。ご不明な点がございましたら、以下にメッセージを残してください。
このアルゴリズムに加えて、この問題を解決するために貪欲なアルゴリズムも作成しました。残念ながら、アルゴリズムの複雑さは最悪の場合でも O(n^2) です (QAQ)。
一般的な考え方は、中央の位置から開始して、隣接する 4 つの点の中で最大の点を見つけ、最後に、ピーク点を確実に見つけることです。コードを見てください:
#!/usr/bin/python3 def dp(n): temp = (str[n],str[n-9],str[n-1],str[n+1],str[n+9]) #中 上 左 右 下 sit = temp.index(max(temp)) if(sit==0): return str[n] elif(sit==1): return dp(n-9) elif(sit==2): return dp(n-1) elif(sit==3): return dp(n+1) else: return dp(n+9) f = open("/home/nancy/桌面/demo.txt","r") list = f.read() list = list.replace(" ","").split() #转换为列表 row = len(list) col = len(list[0]) str="0"*(col+3) for x in list: #加围墙 二维变一维 str+=x+"00" str+="0"*(col+1) mid = int(len(str)/2) print(str,mid) p = dp(mid) print (p) f.close()
関連する推奨事項:
以上がPythonの分割統治法で二次元配列の局所的なピーク値を見つける_pythonの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

PythonとCは、メモリ管理と制御に大きな違いがあります。 1。Pythonは、参照カウントとガベージコレクションに基づいて自動メモリ管理を使用し、プログラマーの作業を簡素化します。 2.Cには、メモリの手動管理が必要であり、より多くの制御を提供しますが、複雑さとエラーのリスクが増加します。どの言語を選択するかは、プロジェクトの要件とチームテクノロジースタックに基づいている必要があります。

科学コンピューティングにおけるPythonのアプリケーションには、データ分析、機械学習、数値シミュレーション、視覚化が含まれます。 1.numpyは、効率的な多次元配列と数学的関数を提供します。 2。ScipyはNumpy機能を拡張し、最適化と線形代数ツールを提供します。 3. Pandasは、データ処理と分析に使用されます。 4.matplotlibは、さまざまなグラフと視覚的な結果を生成するために使用されます。

PythonまたはCを選択するかどうかは、プロジェクトの要件に依存するかどうかは次のとおりです。1)Pythonは、簡潔な構文とリッチライブラリのため、迅速な発展、データサイエンス、スクリプトに適しています。 2)Cは、コンピレーションと手動メモリ管理のため、システムプログラミングやゲーム開発など、高性能および基礎となる制御を必要とするシナリオに適しています。

Pythonは、データサイエンスと機械学習で広く使用されており、主にそのシンプルさと強力なライブラリエコシステムに依存しています。 1)Pandasはデータ処理と分析に使用され、2)Numpyが効率的な数値計算を提供し、3)SCIKIT-LEARNは機械学習モデルの構築と最適化に使用されます。これらのライブラリは、Pythonをデータサイエンスと機械学習に理想的なツールにします。

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

Web開発におけるPythonの主要なアプリケーションには、DjangoおよびFlaskフレームワークの使用、API開発、データ分析と視覚化、機械学習とAI、およびパフォーマンスの最適化が含まれます。 1。DjangoandFlask Framework:Djangoは、複雑な用途の迅速な発展に適しており、Flaskは小規模または高度にカスタマイズされたプロジェクトに適しています。 2。API開発:フラスコまたはdjangorestFrameworkを使用して、Restfulapiを構築します。 3。データ分析と視覚化:Pythonを使用してデータを処理し、Webインターフェイスを介して表示します。 4。機械学習とAI:Pythonは、インテリジェントWebアプリケーションを構築するために使用されます。 5。パフォーマンスの最適化:非同期プログラミング、キャッシュ、コードを通じて最適化

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

SublimeText3 中国語版
中国語版、とても使いやすい

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

ドリームウィーバー CS6
ビジュアル Web 開発ツール

mPDF
mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境
