以下では、Python の numpy ライブラリで行列をリストやその他の関数に変換する方法を共有します。これは優れた参考値であり、皆さんの役に立つことを願っています。ぜひ一緒に見てください
この記事では主に Python の numpy ライブラリのいくつかの関数の紹介と、検索しやすいようにバックアップを作成します。
(1) 行列をリストに変換する関数: numpy.matrix.tolist()
Return list list
Examples
>>>
>>> x = np.matrix(np.arange(12).reshape((3,4))); x matrix([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) >>> x.tolist() [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]
(2) 配列をリストに変換する関数: numpy.ndarray.tolist()
注: (配列は再構築可能)
配列は再構築される可能性があります, a=np.array(a.tolist( ))。
例
>
> ;>>
>>> a = np.array([1, 2]) >>> a.tolist() [1, 2] >>> a = np.array([[1, 2], [3, 4]]) >>> list(a) [array([1, 2]), array([3, 4])] >>> a.tolist() [[1, 2], [3, 4]]
(4) numpy.std() は行列または配列の標準偏差を計算します。
例
>>>
>>> a = np.array([[1, 2], [3, 4]]) #对所有元素求均值 >>> np.mean(a) 2.5 >>> np.mean(a, axis=0) #对每一列求均值 array([ 2., 3.]) >>> np.mean(a, axis=1) #对每一行求均值 array([ 1.5, 3.5])
(5) numpy.newaxis は配列に次元を追加します:
例:
>>> a = np.array([[1, 2], [3, 4]]) #对所有元素求标准差 >>> np.std(a) 1.1180339887498949 >>> np.std(a, axis=0) #对每一列求标准差 array([ 1., 1.]) >>> np.std(a, axis=1) #对每一行求标准差 array([ 0.5, 0.5])りー
(6) numpy.random.shuffle(index): データセット (配列) の順序を乱す:
例:
>>> a=np.array([[1,2,3],[4,5,6],[7,8,9]]) #先输入3行2列的数组a >>> b=a[:,:2] >>> b.shape #当数组的行与列都大于1时,不需增加维度 (3, 2) >>> c=a[:,2] >>> c.shape #可以看到,当数组只有一列时,缺少列的维度 (3,) >>> c array([3, 6, 9])
(7) 最大値と2 次元配列の行または列の最小値:
>>> d=a[:,2,np.newaxis] #np.newaxis实现增加列的维度 >>> d array([[3], [6], [9]]) >>> d.shape #d的维度成了3行1列(3,1) (3, 1) >>> e=a[:,2,None] #None与np.newaxis实现相同的功能 >>> e array([[3], [6], [9]]) >>> e.shape (3, 1)
(8) 配列に列を追加: np.hstack()
>>> index = [i for i in range(10)]
>>> index
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> np.random.shuffle(index)
>>> index
[7, 9, 3, 0, 4, 1, 5, 2, 8, 6]
np が 2 次元であり、l が 1 次元であることを確認してください。np を直接呼び出すと、次のエラーが発生します。次元が異なります。
>>> import numpy as np >>> a = np.arange(15).reshape(5,3) #构造一个5行3列的二维数组 >>> a array([[ 0, 1, 2], [ 3, 4, 5], [ 6, 7, 8], [ 9, 10, 11], [12, 13, 14]]) >>> b = a[:,0].min() ##取第0列的最小值,其他列同理 >>> b 0 >>> c = a[0,:].max() ##取第0行的最大值,其他行同理 >>> c 2
解決策は、l を 2 次元に変更することです。 (5) のメソッドを使用できます。
n = np.array(np.random.randn(4,2)) n Out[153]: array([[ 0.17234 , -0.01480043], [-0.33356669, -1.33565616], [-1.11680009, 0.64230761], [-0.51233174, -0.10359941]]) l = np.array([1,2,3,4]) l Out[155]: array([1, 2, 3, 4]) l.shape Out[156]: (4,)
に値を追加する方法について話しましょう。列ごとの空のリスト:
n = np.hstack((n,l)) ValueError: all the input arrays must have same number of dimensions
継続的に更新中...関連する推奨事項:
Pythonのnumpyライブラリ
Python NumPyライブラリのインストールと使用上のメモ
以上がPython の numpy library_python で行列をリストやその他の関数に変換するメソッドの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Arraysinpython、特にvianumpy、arecrucialinscientificComputing fortheirefficienty andversitility.1)彼らは、fornumericaloperations、data analysis、andmachinelearning.2)numpy'simplementation incensuresfasteroperationsthanpasteroperations.3)arayableminablecickick

Pyenv、Venv、およびAnacondaを使用して、さまざまなPythonバージョンを管理できます。 1)Pyenvを使用して、複数のPythonバージョンを管理します。Pyenvをインストールし、グローバルバージョンとローカルバージョンを設定します。 2)VENVを使用して仮想環境を作成して、プロジェクトの依存関係を分離します。 3)Anacondaを使用して、データサイエンスプロジェクトでPythonバージョンを管理します。 4)システムレベルのタスク用にシステムPythonを保持します。これらのツールと戦略を通じて、Pythonのさまざまなバージョンを効果的に管理して、プロジェクトのスムーズな実行を確保できます。

numpyarrayshaveveraladvantages-averstandardpythonarrays:1)thealmuchfasterduetocベースのインプレンテーション、2)アレモレメモリ効率、特にlargedatasets、および3)それらは、拡散化された、構造化された形成術科療法、

パフォーマンスに対する配列の均一性の影響は二重です。1)均一性により、コンパイラはメモリアクセスを最適化し、パフォーマンスを改善できます。 2)しかし、タイプの多様性を制限し、それが非効率につながる可能性があります。要するに、適切なデータ構造を選択することが重要です。

craftexecutablepythonscripts、次のようになります

numpyarraysarasarebetterfornumeroperations andmulti-dimensionaldata、whilethearraymoduleissuitable forbasic、1)numpyexcelsinperformance and forlargedatasentassandcomplexoperations.2)thearraymuremememory-effictientivearientfa

NumPyArraySareBetterforHeavyNumericalComputing、whilethearrayarayismoreSuitableformemory-constrainedprojectswithsimpledatatypes.1)numpyarraysofferarays andatiledance andpeperancedatasandatassandcomplexoperations.2)thearraymoduleisuleiseightweightandmemememe-ef

ctypesallowsinging andmanipulatingc-stylearraysinpython.1)usectypestointerfacewithclibrariesforperformance.2)createc-stylearraysfornumericalcomputations.3)passarraystocfunctions foreffientientoperations.how、how、becuutiousmorymanagemation、performanceo


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

SecLists
SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

ZendStudio 13.5.1 Mac
強力な PHP 統合開発環境

Safe Exam Browser
Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

ホットトピック









