ホームページ >バックエンド開発 >Python チュートリアル >Pythonのwhere()関数の使い方を詳しく解説
この記事では主に Python の where() 関数の使い方を詳しく紹介します。参考になれば幸いです。
where()の使い方
まず第一に、where()関数は異なる入力に対して異なる値を返すだけであることを強調しておきます。
1 配列が1次元配列の場合、戻り値は1次元のインデックスとなるため、インデックス配列は1組のみです
2 配列が2次元配列の場合、条件を満たす配列値条件は値の位置インデックスを返します。 したがって、値の位置を表すインデックス配列のセットが 2 つあります
例:
>>>b=np.arange(10) >>>b array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>>np.where(b>5) (array([6, 7, 8, 9], dtype=int64),) >>>a=np.reshape(np.arange(20),(4,5)) >>>a array([[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19]]) >>>np.where(a>10) (array([2, 2, 2, 2, 3, 3, 3, 3, 3], dtype=int64), array([1, 2, 3, 4, 0, 1, 2, 3, 4], dtype=int64))
numpy 標準ライブラリの説明の紹介:
numpy.where(condition[, x, y])
条件に基づいて、戻り値はxまたはyから来ます
if.
parameters: |
condition: array, bool value Trueの場合、値がyieldの場合も同様です。条件が true の場合、y の対応する位置の値、それらの 3 つのパラメーターの形状は同じです。そして、条件の値が true の場合は x に対応する値が返され、false の場合は y が返されます。 ②パラメータが条件のみの場合、戻り値は条件の要素値がtrueである位置のインデックスをタプルの形式で返します。タプルの要素は、そのインデックスを示します。 Position |
---|---|
2つのメソッドのサンプルコード 最初の使い方 | np.where(条件,x,y)
配列変数x
配列変数y
import numpy as np ''' x = np.random.randn(4,4) print(np.where(x>0,2,-2)) #试试效果 xarr = np.array([1.1,1.2,1.3,1.4,1.5]) yarr = np.array([2.1,2.2,2.3,2.4,2.5]) zarr = np.array([True,False,True,True,False]) result = [(x if c else y) for x,y,c in zip(xarr,yarr,zarr)] print(result) #where()函数处理就相当于上面那种方案 result = np.where(zarr,xarr,yarr) print(result) ''' #发现个有趣的东西 # #处理2组数组 # #True and True = 0 # #True and False = 1 # #False and True = 2 # #False and False = 3 cond2 = np.array([True,False,True,False]) cond1 = np.array([True,True,False,False]) #第一种处理 太长太丑 result = [] for i in range(4): if (cond1[i] & cond2[i]): result.append(0); elif (cond1[i]): result.append(1); elif (cond2[i]): result.append(2); else : result.append(3); print(result) #第二种 直接where() 很快很方便 result = np.where(cond1 & cond2,0,np.where(cond1,1,np.where(cond2,2,3))) print(result) #第三种 更简便(好像这跟where()函数半毛钱的关系都没有 result = 1*(cond1 & -cond2)+2*(cond2 & -cond1)+3*(-(cond1 | cond2)) (没想到还可以这么表达吧) print(result)
2番目の使用法
where(条件)
は配列
x = np.arange(16) print(x[np.where(x>5)]) #输出:(array([ 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], dtype=int64),) x = np.arange(16).reshape(-1,4) print(np.where(x>5)) #(array([1, 1, 2, 2, 2, 2, 3, 3, 3, 3], dtype=int64), array([2, 3, 0, 1, 2, 3, 0, 1, 2, 3], dtype=int64)) #注意这里是坐标是前面的一维的坐标,后面是二维的坐标
rrを与えるのと同じですリー
以上がPythonのwhere()関数の使い方を詳しく解説の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。