ホームページ >バックエンド開発 >PHPチュートリアル >Rust への PHP 拡張機能
この記事では、PHP プログラムで Rust 拡張機能を使用する方法を主に紹介します。 Rust は、優れたパフォーマンスを備えた最近登場したコンパイル言語です。お役に立てれば幸いです。
C または PHP での Rust
私の基本的な開始点は、コンパイル可能な Rust コードをライブラリに書き込み、そのコード用の C ヘッダー ファイルをいくつか書き込み、呼び出された PHP の拡張機能を C で作成することです。簡単ではありませんが、楽しいです。
Rust FFI (外部関数インターフェース)
私が最初にやったことは、Rust を C に接続する Rust の外部関数インターフェースを試してみることでした。私はかつて、単一の宣言 (文字列とも呼ばれる C 文字へのポインター) を持つ単純なメソッド (hello_from_rust) を使用して柔軟なライブラリを作成しました。これは、入力後の「Hello from Rust」の出力です。
// hello_from_rust.rs #![crate_type = "staticlib"] #![feature(libc)] extern crate libc; use std::ffi::CStr; #[no_mangle] pub extern "C" fn hello_from_rust(name: *const libc::c_char) { let buf_name = unsafe { CStr::from_ptr(name).to_bytes() }; let str_name = String::from_utf8(buf_name.to_vec()).unwrap(); let c_name = format!("Hello from Rust, {}", str_name); println!("{}", c_name); }
C (または何でも!) から呼び出された Rust ライブラリから分割しました。次に何が起こるのかをわかりやすく説明します。
コンパイルすると、.a、libhello_from_rust.a というファイルが得られます。これは独自の依存関係をすべて含む静的ライブラリであり、C プログラムをコンパイルするときにリンクして、後続の処理を実行できるようにします。注: コンパイル後、次の出力が得られます:
note: link against the following native artifacts when linking against this static library note: the order and any duplication can be significant on some platforms, and so may need to be preserved note: library: Systemnote: library: pthread note: library: c note: library: m
これは、この依存関係を使用しない場合に Rust コンパイラーがリンクするように指示するものです。
C から Rust を呼び出す
ライブラリを作成したので、それが C から呼び出せるようにするために 2 つのことを行う必要があります。まず、C ヘッダー ファイル hello_from_rust.h を作成する必要があります。次に、コンパイル時にリンクします。
以下はヘッダー ファイルです:
// hello_from_rust.h #ifndef __HELLO #define __HELLO void hello_from_rust(const char *name); #endif
これは、単純な関数の署名/定義を提供するだけのかなり基本的なヘッダー ファイルです。次に、C プログラムを作成して使用する必要があります。
// hello.c #include <stdio.h> #include <stdlib.h> #include "hello_from_rust.h" int main(int argc, char *argv[]) { hello_from_rust("Jared!"); }
次のコードを実行してコンパイルします:
gcc -Wall -o hello_c hello.c -L /Users/jmcfarland/code/rust/php-hello-rust -lhello_from_rust -lSystem -lpthread -lc -lm
最後の -lSystem -lpthread -lc -lm は gcc にこれらの「ローカル アンティーク」をリンクしないよう指示していることに注意してください。 , Rust ライブラリをコンパイルするときに Rust コンパイラがそれを提供するためです。
次のコードを実行すると、バイナリ ファイルを取得できます:
$ ./hello_c Hello from Rust, Jared!
美しい! C から Rust ライブラリを呼び出したところです。次に、Rust ライブラリがどのように PHP 拡張機能に組み込まれるかを理解する必要があります。
phpからcを呼び出す
この部分を理解するのに時間がかかり、ドキュメントはphp拡張機能に関しては世界で最高のものではありません。最良の部分は、php ソースが、必要な定型コードのほとんどを生成するスクリプト ext_skel (主に「拡張スケルトン」の略) をバンドルして得られることです。引用符で囲まれていない php ソースをダウンロードし、php ディレクトリにコードを書き込んで実行することで開始できます:
$ cd ext/ $ ./ext_skel --extname=hello_from_rust
これにより、php 拡張機能の作成に必要な基本的なスケルトンが生成されます。次に、拡張機能をローカルに保持したい場所にフォルダーを移動します。そして、
.rust ソース
.rust ライブラリ
.c ヘッダー
を同じディレクトリに移動します。したがって、次のようなディレクトリを確認する必要があります:
. ├── CREDITS ├── EXPERIMENTAL ├── config.m4 ├── config.w32 ├── hello_from_rust.c ├── hello_from_rust.h ├── hello_from_rust.php ├── hello_from_rust.rs ├── libhello_from_rust.a ├── php_hello_from_rust.h └── tests └── 001.phpt
1 つのディレクトリ、11 個のファイル
これらのファイルの詳しい説明は、上記の php ドキュメントで見ることができます。拡張ファイルを作成します。まず config.m4 を編集します。
説明は省きますが、私の結果は次のとおりです:
PHP_ARG_WITH(hello_from_rust, for hello_from_rust support, [ --with-hello_from_rust Include hello_from_rust support]) if test "$PHP_HELLO_FROM_RUST" != "no"; then PHP_SUBST(HELLO_FROM_RUST_SHARED_LIBADD) PHP_ADD_LIBRARY_WITH_PATH(hello_from_rust, ., HELLO_FROM_RUST_SHARED_LIBADD) PHP_NEW_EXTENSION(hello_from_rust, hello_from_rust.c, $ext_shared) fi
私の理解では、これらは基本的なマクロコマンドです。しかし、これらのマクロに関するドキュメントは非常に貧弱です (たとえば、Google で「PHP_ADD_LIBRARY_WITH_PATH」を検索しても、PHP チームによって作成された結果は表示されません)。この PHP_ADD_LIBRARY_PATH マクロは、誰かが PHP 拡張機能で静的ライブラリをリンクすることについて話していた前のスレッドで見つけました。コメント内の他の推奨マクロは、ext_skel を実行した後に生成されました。
構成のセットアップが完了したので、実際に PHP スクリプトからライブラリを呼び出す必要があります。これを行うには、自動生成されたファイル hello_from_rust.c を変更する必要があります。まず、hello_from_rust.h ヘッダー ファイルを include コマンドに追加します。次に、confirm_hello_from_rust_compiled の定義メソッドを変更する必要があります。
#include "hello_from_rust.h" // a bunch of comments and code removed... PHP_FUNCTION(confirm_hello_from_rust_compiled) { char *arg = NULL; int arg_len, len; char *strg; if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "s", &arg, &arg_len) == FAILURE) { return; } hello_from_rust("Jared (from PHP!!)!"); len = spprintf(&strg, 0, "Congratulations! You have successfully modified ext/%.78s/config.m4. Module %.78s is now compiled into PHP.", "hello_from_rust", arg); RETURN_STRINGL(strg, len, 0); }
注: hello_from_rust("Jared (fromPHP!!)!"); を追加しました。
これで、拡張機能を構築してみます:
$ phpize $ ./configure $ sudo make install
以上で、メタ構成を生成し、生成された構成コマンドを実行して、拡張機能をインストールします。ユーザーがインストール ディレクトリの php 拡張機能を所有していなかったため、インストール時に自分で sudo を使用する必要がありました。
これで、実行できるようになりました。
りー还不错,php 已进入我们的 c 扩展,看到我们的应用方法列表并且调用。接着,c 扩展已进入我们的 rust 库,开始打印我们的字符串。那很有趣!但是......那段错误的结局发生了什么?
正如我所提到的,这里是使用了 Rust 相关的 println! 宏,但是我没有对它做进一步的调试。如果我们从我们的 Rust 库中删除并返回一个 char* 替代,段错误就会消失。
这里是 Rust 的代码:
#![crate_type = "staticlib"] #![feature(libc)] extern crate libc; use std::ffi::{CStr, CString}; #[no_mangle] pub extern "C" fn hello_from_rust(name: *const libc::c_char) -> *const libc::c_char { let buf_name = unsafe { CStr::from_ptr(name).to_bytes() }; let str_name = String::from_utf8(buf_name.to_vec()).unwrap(); let c_name = format!("Hello from Rust, {}", str_name); CString::new(c_name).unwrap().as_ptr() }
并变更 C 头文件:
#ifndef __HELLO #define __HELLO const char * hello_from_rust(const char *name); #endif
还要变更 C 扩展文件:
PHP_FUNCTION(confirm_hello_from_rust_compiled) { char *arg = NULL; int arg_len, len; char *strg; if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "s", &arg, &arg_len) == FAILURE) { return; } char *str; str = hello_from_rust("Jared (from PHP!!)!"); printf("%s\n", str); len = spprintf(&strg, 0, "Congratulations! You have successfully modified ext/%.78s/config.m4. Module %.78s is now compiled into PHP.", "hello_from_rust", arg); RETURN_STRINGL(strg, len, 0); }
无用的微基准
那么为什么你还要这样做?我还真的没有在现实世界里使用过这个。但是我真的认为斐波那契序列算法就是一个好的例子来说明一个PHP拓展如何很基本。通常是直截了当(在Ruby中):
def fib(at) do if (at == 1 || at == 0) return at else return fib(at - 1) + fib(at - 2) end end
而且可以通过不使用递归来改善这不好的性能:
def fib(at) do if (at == 1 || at == 0) return at elsif (val = @cache[at]).present? return val end total = 1 parent = 1 gp = 1 (1..at).each do |i| total = parent + gp gp = parent parent = total end return total end
那么我们围绕它来写两个例子,一个在PHP中,一个在Rust中。看看哪个更快。下面是PHP版:
def fib(at) do if (at == 1 || at == 0) return at elsif (val = @cache[at]).present? return val end total = 1 parent = 1 gp = 1 (1..at).each do |i| total = parent + gp gp = parent parent = total end return total end
这是它的运行结果:
$ time php php_fib.php real 0m2.046s user 0m1.823s sys 0m0.207s
现在我们来做Rust版。下面是库资源:
#![crate_type = "staticlib"] fn fib(at: usize) -> usize { if at == 0 { return 0; } else if at == 1 { return 1; } let mut total = 1; let mut parent = 1; let mut gp = 0; for _ in 1 .. at { total = parent + gp; gp = parent; parent = total; } return total; } #[no_mangle] pub extern "C" fn rust_fib(at: usize) -> usize { fib(at) }
注意,我编译的库rustc - O rust_lib.rs使编译器优化(因为我们是这里的标准)。这里是C扩展源(相关摘录):
PHP_FUNCTION(confirm_rust_fib_compiled) { long number; if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "l", &number) == FAILURE) { return; } RETURN_LONG(rust_fib(number)); }
运行PHP脚本:
<?php $br = (php_sapi_name() == "cli")? "":"<br>"; if(!extension_loaded('rust_fib')) { dl('rust_fib.' . PHP_SHLIB_SUFFIX); } for ($i = 0; $i < 100000; $i ++) { confirm_rust_fib_compiled(92); } ?>
这就是它的运行结果:
$ time php rust_fib.php real 0m0.586s user 0m0.342s sys 0m0.221s
你可以看见它比前者快了三倍!完美的Rust微基准!
相关推荐:
macOS 中使用 phpize 动态添加 PHP 扩展的错误解决方法
以上がRust への PHP 拡張機能の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。