ホームページ >バックエンド開発 >PHPチュートリアル >PHP トラバーサル アルゴリズムの概要
この記事の例では、PHP で実装されたグラフの隣接行列表現といくつかの単純な走査アルゴリズムについて説明します。参考のために皆さんと共有してください。詳細は次のとおりです:
今回は、PHP 実装グラフの隣接行列表現といくつかの単純な走査アルゴリズムを用意しました。誰もが PHP の道をさらに前進できるように、見てみましょう。
Web 開発では、グラフ データ構造の適用はツリーの適用よりもはるかに少ないですが、一部のビジネスでは頻繁に使用されます。ここではいくつかのグラフ パス探索アルゴリズムを紹介します。それらは主に PHP で実装されています。
アルゴリズムは主にフロイドです。点間の隣接するエッジの重みに従って頂点セットを横断します。このように、論理的には点間の最短経路が得られます。実装も比較的単純で、時間計算量は O(n^3) です。djisktra アルゴリズムは、OSPF で最短ルートを実装するために使用される古典的なアルゴリズムです。頂点パスを継続的に走査して拡張します。短いポイントツーポイント パスが見つかると、すべての走査が完了した後、S がすべての頂点の最短パスのセットになります。ダイクストラのアルゴリズムの時間計算量は O(n ^2) です。
クラスカルのアルゴリズムは、グラフ内のすべての頂点を接続する最小スパニング ツリーを構築します。このため、時間計算量は O(N*) になります。 logN);
<?php /** * PHP 实现图邻接矩阵 */ class MGraph{ private $vexs; //顶点数组 private $arc; //边邻接矩阵,即二维数组 private $arcData; //边的数组信息 private $direct; //图的类型(无向或有向) private $hasList; //尝试遍历时存储遍历过的结点 private $queue; //广度优先遍历时存储孩子结点的队列,用数组模仿 private $infinity = 65535;//代表无穷,即两点无连接,建带权值的图时用,本示例不带权值 private $primVexs; //prim算法时保存顶点 private $primArc; //prim算法时保存边 private $krus;//kruscal算法时保存边的信息 public function MGraph($vexs, $arc, $direct = 0){ $this->vexs = $vexs; $this->arcData = $arc; $this->direct = $direct; $this->initalizeArc(); $this->createArc(); } private function initalizeArc(){ foreach($this->vexs as $value){ foreach($this->vexs as $cValue){ $this->arc[$value][$cValue] = ($value == $cValue ? 0 : $this->infinity); } } } //创建图 $direct:0表示无向图,1表示有向图 private function createArc(){ foreach($this->arcData as $key=>$value){ $strArr = str_split($key); $first = $strArr[0]; $last = $strArr[1]; $this->arc[$first][$last] = $value; if(!$this->direct){ $this->arc[$last][$first] = $value; } } } //floyd算法 public function floyd(){ $path = array();//路径数组 $distance = array();//距离数组 foreach($this->arc as $key=>$value){ foreach($value as $k=>$v){ $path[$key][$k] = $k; $distance[$key][$k] = $v; } } for($j = 0; $j < count($this->vexs); $j ++){ for($i = 0; $i < count($this->vexs); $i ++){ for($k = 0; $k < count($this->vexs); $k ++){ if($distance[$this->vexs[$i]][$this->vexs[$k]] > $distance[$this->vexs[$i]][$this->vexs[$j]] + $distance[$this->vexs[$j]][$this->vexs[$k]]){ $path[$this->vexs[$i]][$this->vexs[$k]] = $path[$this->vexs[$i]][$this->vexs[$j]]; $distance[$this->vexs[$i]][$this->vexs[$k]] = $distance[$this->vexs[$i]][$this->vexs[$j]] + $distance[$this->vexs[$j]][$this->vexs[$k]]; } } } } return array($path, $distance); } //djikstra算法 public function dijkstra(){ $final = array(); $pre = array();//要查找的结点的前一个结点数组 $weight = array();//权值和数组 foreach($this->arc[$this->vexs[0]] as $k=>$v){ $final[$k] = 0; $pre[$k] = $this->vexs[0]; $weight[$k] = $v; } $final[$this->vexs[0]] = 1; for($i = 0; $i < count($this->vexs); $i ++){ $key = 0; $min = $this->infinity; for($j = 1; $j < count($this->vexs); $j ++){ $temp = $this->vexs[$j]; if($final[$temp] != 1 && $weight[$temp] < $min){ $key = $temp; $min = $weight[$temp]; } } $final[$key] = 1; for($j = 0; $j < count($this->vexs); $j ++){ $temp = $this->vexs[$j]; if($final[$temp] != 1 && ($min + $this->arc[$key][$temp]) < $weight[$temp]){ $pre[$temp] = $key; $weight[$temp] = $min + $this->arc[$key][$temp]; } } } return $pre; } //kruscal算法 private function kruscal(){ $this->krus = array(); foreach($this->vexs as $value){ $krus[$value] = 0; } foreach($this->arc as $key=>$value){ $begin = $this->findRoot($key); foreach($value as $k=>$v){ $end = $this->findRoot($k); if($begin != $end){ $this->krus[$begin] = $end; } } } } //查找子树的尾结点 private function findRoot($node){ while($this->krus[$node] > 0){ $node = $this->krus[$node]; } return $node; } //prim算法,生成最小生成树 public function prim(){ $this->primVexs = array(); $this->primArc = array($this->vexs[0]=>0); for($i = 1; $i < count($this->vexs); $i ++){ $this->primArc[$this->vexs[$i]] = $this->arc[$this->vexs[0]][$this->vexs[$i]]; $this->primVexs[$this->vexs[$i]] = $this->vexs[0]; } for($i = 0; $i < count($this->vexs); $i ++){ $min = $this->infinity; $key; foreach($this->vexs as $k=>$v){ if($this->primArc[$v] != 0 && $this->primArc[$v] < $min){ $key = $v; $min = $this->primArc[$v]; } } $this->primArc[$key] = 0; foreach($this->arc[$key] as $k=>$v){ if($this->primArc[$k] != 0 && $v < $this->primArc[$k]){ $this->primArc[$k] = $v; $this->primVexs[$k] = $key; } } } return $this->primVexs; } //一般算法,生成最小生成树 public function bst(){ $this->primVexs = array($this->vexs[0]); $this->primArc = array(); next($this->arc[key($this->arc)]); $key = NULL; $current = NULL; while(count($this->primVexs) < count($this->vexs)){ foreach($this->primVexs as $value){ foreach($this->arc[$value] as $k=>$v){ if(!in_array($k, $this->primVexs) && $v != 0 && $v != $this->infinity){ if($key == NULL || $v < current($current)){ $key = $k; $current = array($value . $k=>$v); } } } } $this->primVexs[] = $key; $this->primArc[key($current)] = current($current); $key = NULL; $current = NULL; } return array('vexs'=>$this->primVexs, 'arc'=>$this->primArc); } //一般遍历 public function reserve(){ $this->hasList = array(); foreach($this->arc as $key=>$value){ if(!in_array($key, $this->hasList)){ $this->hasList[] = $key; } foreach($value as $k=>$v){ if($v == 1 && !in_array($k, $this->hasList)){ $this->hasList[] = $k; } } } foreach($this->vexs as $v){ if(!in_array($v, $this->hasList)) $this->hasList[] = $v; } return implode($this->hasList); } //广度优先遍历 public function bfs(){ $this->hasList = array(); $this->queue = array(); foreach($this->arc as $key=>$value){ if(!in_array($key, $this->hasList)){ $this->hasList[] = $key; $this->queue[] = $value; while(!empty($this->queue)){ $child = array_shift($this->queue); foreach($child as $k=>$v){ if($v == 1 && !in_array($k, $this->hasList)){ $this->hasList[] = $k; $this->queue[] = $this->arc[$k]; } } } } } return implode($this->hasList); } //执行深度优先遍历 public function excuteDfs($key){ $this->hasList[] = $key; foreach($this->arc[$key] as $k=>$v){ if($v == 1 && !in_array($k, $this->hasList)) $this->excuteDfs($k); } } //深度优先遍历 public function dfs(){ $this->hasList = array(); foreach($this->vexs as $key){ if(!in_array($key, $this->hasList)) $this->excuteDfs($key); } return implode($this->hasList); } //返回图的二维数组表示 public function getArc(){ return $this->arc; } //返回结点个数 public function getVexCount(){ return count($this->vexs); } } $a = array('a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i'); $b = array('ab'=>'10', 'af'=>'11', 'bg'=>'16', 'fg'=>'17', 'bc'=>'18', 'bi'=>'12', 'ci'=>'8', 'cd'=>'22', 'di'=>'21', 'dg'=>'24', 'gh'=>'19', 'dh'=>'16', 'de'=>'20', 'eh'=>'7','fe'=>'26');//键为边,值权值 $test = new MGraph($a, $b); print_r($test->bst());
行の結果:
Array ( [vexs] => Array ( [0] => a [1] => b [2] => f [3] => i [4] => c [5] => g [6] => h [7] => e [8] => d ) [arc] => Array ( [ab] => 10 [af] => 11 [bi] => 12 [ic] => 8 [bg] => 16 [gh] => 19 [he] => 7 [hd] => 16 ) )
これらのケースを読んだ後は、方法を習得したと思います。さらに興味深い情報については、php 中国語 Web サイトの他の関連記事に注目してください。
関連書籍:
バイナリーツリートラバーサルアルゴリズム -phpの例
トラバーサルアルゴリズムサンプルコードの詳細な説明
トラバーサル二分木のアルゴリズム詳細な例 _JavaScript スキル
以上がPHP トラバーサル アルゴリズムの概要の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。