以下のエディターは、Python でバイナリ ヒープとヒープ ソートを実装する例を示します。編集者はこれがとても良いものだと思ったので、皆さんの参考として今から共有します。エディターに従って、ヒープを見てみましょう。ヒープ内のデータ ストレージは特定のヒープ順序を満たしています。ヒープ ソートは選択ソートであり、そのアルゴリズムの複雑さと時間の計算量は他のソート アルゴリズムに比べて大きな利点があります。
ヒープは、大きな頭のヒープと小さな頭のヒープに分けられます。大きな頭のヒープの最初の要素は、子ノードを持つ各親ノードのデータ値よりも大きくなります。その子ノードは大きいです。 Xiaotou Duiはその逆です。
ツリーヒープを構築するアルゴリズムプロセスを簡単に説明します: 位置N/2の配列データを検索し、この位置から開始して、ノードの左側の子ノードのインデックスを検索し、最初に比較しますこの結果 点の下にある子ノードのうち最大のものを見つけ、最大の子ノードのインデックスを左側の子ノードに割り当て、最大の子ノードと親ノードを比較します。親ノードより大きい場合は、親ノードはデータを交換します。もちろん、実装については先ほど簡単に説明しましたが、このプロセスではノードが存在しない状況も考慮する必要があります。
コードを見てください:
# 构建二叉堆 def binaryHeap(arr, lenth, m): temp = arr[m] # 当前结点的值 while(2*m+1 < lenth): lchild = 2*m+1 if lchild != lenth - 1 and arr[lchild] < arr[lchild + 1]: lchild = lchild + 1 if temp < arr[lchild]: arr[m] = arr[lchild] else: break m = lchild arr[m] = temp def heapsort(arr, length): i = int(len(arr)/2) while(i >= 0): binaryHeap(arr, len(arr), i) i = i - 1 print("二叉堆的物理顺序为:") print(arr) # 输出二叉堆的物理顺序 if __name__ == '__main__': arr = [2, 87, 39, 49, 34, 62, 53, 6, 44, 98] heapsort(arr, len(arr))
ヒープソートプロセスは、最後のノードをシーケンスの最初のノードと比較して交換します:
# 构建二叉堆 def binaryHeap(arr, lenth, m): temp = arr[m] # 当前结点的值 while(2*m+1 < lenth): lchild = 2*m+1 if lchild != lenth - 1 and arr[lchild] < arr[lchild + 1]: lchild = lchild + 1 if temp < arr[lchild]: arr[m] = arr[lchild] else: break m = lchild arr[m] = temp def heapsort(arr, length): i = int(len(arr)/2) while(i >= 0): binaryHeap(arr, len(arr), i) i = i - 1 print("二叉堆的物理顺序为:") print(arr) # 输出二叉堆的物理顺序 i = length-1 while(i > 0): arr[i], arr[0] = arr[0], arr[i] # 变量交换 binaryHeap(arr, i, 0) i = i - 1560 def pop(arr): first = arr.pop(0) return first if __name__ == '__main__': arr = [2, 87, 39, 49, 34, 62, 53, 6, 44, 98] heapsort(arr, len(arr)) print("堆排序后的物理顺序") print(arr) # 输出经过堆排序之后的物理顺序 data = pop(arr) print(data) print(arr)
Pythonはヒープモジュールをカプセル化します。このモジュールはプライオリティキューを非常に効率的に実装できます
import heapq class Item: def __init__(self, name): self.name = name def __repr__(self): return 'Item({!r})'.format(self.name) class PriorityQueue: def __init__(self): self._queue = [] self._index = 0 def push(self, item, priority): heapq.heappush(self._queue, (-priority, self._index, item)) # 存入一个三元组 self._index += 1 def pop(self): return heapq.heappop(self._queue)[-1] # 逆序输出 if __name__ == '__main__': p = PriorityQueue() p.push(Item('foo'), 1) p.push(Item('bar'), 5) p.push(Item('spam'), 4) p.push(Item('grok'), 1) print(p.pop()) print(p.pop())
詳しくはheapq公式サイトをご覧ください
以上がPython でバイナリ ヒープとヒープ ソートを実装するコード例の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

ドリームウィーバー CS6
ビジュアル Web 開発ツール

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

SublimeText3 英語版
推奨: Win バージョン、コードプロンプトをサポート!

ZendStudio 13.5.1 Mac
強力な PHP 統合開発環境
