この記事は主に、同時実行性を処理するための Python の asyncio パッケージの使用に関する関連情報を詳しく紹介します。興味のある方は参考にしてください。
I/O と GIL のブロック
CPython の説明。はスレッドセーフではないため、一度に 1 つのスレッドのみが Python バイトコードを実行できるようにする Global Interpreter Lock (GIL) があります。したがって、Python プロセスは通常、複数の CPU コアを同時に使用できません。
ただし、ブロッキング I/O 操作を実行する標準ライブラリ内のすべての関数は、オペレーティング システムが結果を返すのを待っている間に GIL を解放します。これは、Python 言語レベルでマルチスレッドが可能であり、I/O 集中型の Python プログラムがこの利点を活用できることを意味します。1 つの Python スレッドがネットワーク応答を待機している間、ブロッキング I/O 関数が GIL を解放し、別のスレッドを実行します。 。
asyncio
このパッケージは、イベント ループ駆動のコルーチンを使用して同時実行性を実装します。 asyncio は式からのyieldを多用するため、古いバージョンのPythonとは互換性がありません。
asyncio パッケージで使用される「コルーチン」は、より厳密な定義です。 asyncio API に適したコルーチンは、定義本体で yield from を使用する必要がありますが、yield は使用できません。さらに、asyncio に適したコルーチンは呼び出し元によって駆動され、yield from を介して呼び出し元によって呼び出される必要があります。
asyncio.sleep(3) は 3 秒で完了するコルーチンを作成します。loop.run_until_complete(future)、future が完了するまで実行します。パラメーターがコルーチン オブジェクトの場合は、ensure_future() 関数ラッパーを使用する必要があります。 loop.close() はイベントループを閉じます
例 2
import threading import asyncio @asyncio.coroutine def hello(): print('Start Hello', threading.currentThread()) yield from asyncio.sleep(5) print('End Hello', threading.currentThread()) @asyncio.coroutine def world(): print('Start World', threading.currentThread()) yield from asyncio.sleep(3) print('End World', threading.currentThread()) # 获取EventLoop: loop = asyncio.get_event_loop() tasks = [hello(), world()] # 执行coroutine loop.run_until_complete(asyncio.wait(tasks)) loop.close()
説明:
1. asyncio.ensure_future(coro_or_future, *,loop=None): の実行をスケジュールする計画コルーチン オブジェクト、asyncio.Task オブジェクトを返します。 2.worker_fu.cancel(): コルーチンの実行をキャンセルし、CancelledError 例外をスローします。
3. asyncio.wait(): コルーチンのパラメーターは、future またはコルーチンで構成される反復可能なオブジェクトです。wait は各コルーチンを Task オブジェクトにラップします。Task オブジェクトはコルーチンの駆動に使用され、Thread オブジェクトは呼び出し可能なオブジェクトの呼び出しに使用されます。
Task オブジェクトは自分でインスタンス化されるのではなく、コルーチンを asyncio.ensure_future(…) 関数またはloop.create_task(…) メソッドに渡すことによって取得されます。
取得した Task オブジェクトは実行するようにスケジュールされています。Thread インスタンスは start メソッドを呼び出して明示的に実行を指示する必要があります。タスクを終了したい場合は、Task.cancel() インスタンス メソッドを使用して、コルーチン内で CancelledError 例外をスローします。
スレッドとコルーチンの安全性の比較
スレッドを使用して重要なプログラミングを行った場合は、スケジューラーがいつでもスレッドを中断できるためです。プログラムの重要な部分を保護し、実行中に複数ステップの操作が中断されるのを防ぎ、データが無効な状態になるのを防ぐために、必ずロックを保持する必要があります。
コルーチンは、中断を防ぐためにデフォルトで完全に保護されます。プログラムの残りの部分を実行するには、明示的に出力する必要があります。コルーチンの場合、常に 1 つのコルーチンのみが実行されるため、ロックを保持したり、複数のスレッド間で操作を同期したりする必要はありません。制御を引き継ぎたい場合は、yield または yield from を使用して制御をスケジューラに戻すことができます。これが、コルーチンを安全にキャンセルできる理由です。定義上、コルーチンは一時停止されたイールドでのみキャンセルできるため、CancelledError 例外を処理し、クリーンアップ操作を実行できます。
通常、Future は自分で作成すべきではありませんが、同時実行フレームワーク (concurrent.futures または asyncio) によってのみインスタンス化できます。理由は簡単です。先物は最終的に何かが起こることを表しており、何かが起こることを確実に知る唯一の方法は、その実行がスケジュールされているかどうかだけです。
asyncio.Futureasyncio パッケージでは、BaseEventLoop.create_task(…) メソッドがコルーチンを受け取り、その実行時間をスケジュールし、asyncio.Future クラスのインスタンスでもある asyncio.Task インスタンスを返します。 Task は Future のサブクラスであり、コルーチンをラップするために使用されるためです。 asyncio.ensure_future(coro_or_future, *,loop=None)
この関数はコルーチンとフューチャーを統合します。最初のパラメーターは 2 つのいずれかになります。 Future オブジェクトまたは Task オブジェクトの場合は、変更せずに返されます。コルーチンの場合、async 関数はloop.create_task(...) メソッドを呼び出して Task オブジェクトを作成します。 loop= キーワード引数はオプションであり、イベント ループに渡すために使用されます。渡されない場合、async 関数は asyncio.get_event_loop() 関数を呼び出してループ オブジェクトを取得します。
BaseEventLoop.create_task(coro)このメソッドは、コルーチンの実行時間をスケジュールし、asyncio.Task オブジェクトを返します。
asyncio パッケージには、BaseEventLoop.run_until_complete(…) メソッドなど、asyncio.Task オブジェクトのパラメーターで指定されたコルーチンを自動的にラップする複数の関数があります。
asyncio.as_completed为了集成进度条,我们可以使用的是 as_completed 生成器函数;幸好, asyncio 包提供了这个生成器函数的相应版本。
使用asyncio和aiohttp包
从 Python 3.4 起, asyncio 包只直接支持 TCP 和 UDP。如果想使用 HTTP 或其他协议,那么要借助第三方包 aiohttp 。
cc_list = ['China', 'USA'] @asyncio.coroutine def get_flag(cc): url = '{}/{cc}/{cc}.gif'.format(BASE_URL, cc=cc.lower()) resp = yield from aiohttp.request('GET', url) image = yield from resp.read() return image @asyncio.coroutine def download_one(name): image = yield from get_flag(name) save_flag(image, name.lower() + '.gif') return name loop = asyncio.get_event_loop() wait_coro = asyncio.wait([download_one(cc) for cc in sorted(cc_list)]) res, _ = loop.run_until_complete(wait_coro) loop.close()
使用 asyncio 包时,我们编写的异步代码中包含由 asyncio 本身驱动的协程(即委派生成器),而生成器最终把职责委托给 asyncio 包或第三方库(如aiohttp)中的协程。这种处理方式相当于架起了管道,让 asyncio 事件循环(通过我们编写的协程)驱动执行低层异步 I/O 操作的库函数。
避免阻塞型调用
有两种方法能避免阻塞型调用中止整个应用程序的进程:
1. 在单独的线程中运行各个阻塞型操作
2. 把每个阻塞型操作转换成非阻塞的异步调用使用
多个线程是可以的,但是各个操作系统线程(Python 使用的是这种线程)消耗的内存达兆字节(具体的量取决于操作系统种类)。如果要处理几千个连接,而每个连接都使用一个线程的话,我们负担不起。
把生成器当作协程使用是异步编程的另一种方式。对事件循环来说,调用回调与在暂停的协程上调用 .send() 方法效果差不多。各个暂停的协程是要消耗内存,但是比线程消耗的内存数量级小。
上面的脚本为什么会很快
在上面的脚本中,调用 loop.run_until_complete 方法时,事件循环驱动各个download_one 协程,运行到第一个 yield from 表达式处时,那个表达式驱动各个get_flag 协程,然后在get_flag协程里面运行到第一个 yield from 表达式处时,调用 aiohttp.request(…)函数。这些调用都不会阻塞,因此在零点几秒内所有请求全部开始。
asyncio 的基础设施获得第一个响应后,事件循环把响应发给等待结果的 get_flag 协程。得到响应后, get_flag 向前执行到下一个 yield from 表达式处,调用resp.read() 方法,然后把控制权还给主循环。其他响应会陆续返回。所有 get_ flag 协程都获得结果后,委派生成器 download_one 恢复,保存图像文件。
async和await
为了简化并更好地标识异步IO,从Python 3.5开始引入了新的语法async和await,可以让coroutine的代码更简洁易读。
async和await是针对coroutine的新语法,要使用新的语法,只需要做两步简单的替换。
1. 把@asyncio.coroutine替换为async
2. 把yield from替换为await
例如:
@asyncio.coroutine def hello(): print("Hello world!") r = yield from asyncio.sleep(1) print("Hello again!")
等同于
async def hello(): print("Hello world!") r = await asyncio.sleep(1) print("Hello again!")
网站请求实例
import asyncio import aiohttp urls = [ 'http://www.163.com/', 'http://www.sina.com.cn/', 'https://www.hupu.com/', 'http://www.php.cn/' ] async def get_url_data(u): """ 读取url的数据 :param u: :return: """ print('running ', u) async with aiohttp.ClientSession() as session: async with session.get(u) as resp: print(u, resp.status, type(resp.text())) # print(await resp.text()) return resp.headers async def request_url(u): """ 主调度函数 :param u: :return: """ res = await get_url_data(u) return res loop = asyncio.get_event_loop() task_lists = asyncio.wait([request_url(u) for u in urls]) all_res, _ = loop.run_until_complete(task_lists) loop.close() print(all_res)
以上がPython が asyncio パッケージを使用して同時実行を処理する方法の詳細な説明の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

PythonとCは、メモリ管理と制御に大きな違いがあります。 1。Pythonは、参照カウントとガベージコレクションに基づいて自動メモリ管理を使用し、プログラマーの作業を簡素化します。 2.Cには、メモリの手動管理が必要であり、より多くの制御を提供しますが、複雑さとエラーのリスクが増加します。どの言語を選択するかは、プロジェクトの要件とチームテクノロジースタックに基づいている必要があります。

科学コンピューティングにおけるPythonのアプリケーションには、データ分析、機械学習、数値シミュレーション、視覚化が含まれます。 1.numpyは、効率的な多次元配列と数学的関数を提供します。 2。ScipyはNumpy機能を拡張し、最適化と線形代数ツールを提供します。 3. Pandasは、データ処理と分析に使用されます。 4.matplotlibは、さまざまなグラフと視覚的な結果を生成するために使用されます。

PythonまたはCを選択するかどうかは、プロジェクトの要件に依存するかどうかは次のとおりです。1)Pythonは、簡潔な構文とリッチライブラリのため、迅速な発展、データサイエンス、スクリプトに適しています。 2)Cは、コンピレーションと手動メモリ管理のため、システムプログラミングやゲーム開発など、高性能および基礎となる制御を必要とするシナリオに適しています。

Pythonは、データサイエンスと機械学習で広く使用されており、主にそのシンプルさと強力なライブラリエコシステムに依存しています。 1)Pandasはデータ処理と分析に使用され、2)Numpyが効率的な数値計算を提供し、3)SCIKIT-LEARNは機械学習モデルの構築と最適化に使用されます。これらのライブラリは、Pythonをデータサイエンスと機械学習に理想的なツールにします。

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

Web開発におけるPythonの主要なアプリケーションには、DjangoおよびFlaskフレームワークの使用、API開発、データ分析と視覚化、機械学習とAI、およびパフォーマンスの最適化が含まれます。 1。DjangoandFlask Framework:Djangoは、複雑な用途の迅速な発展に適しており、Flaskは小規模または高度にカスタマイズされたプロジェクトに適しています。 2。API開発:フラスコまたはdjangorestFrameworkを使用して、Restfulapiを構築します。 3。データ分析と視覚化:Pythonを使用してデータを処理し、Webインターフェイスを介して表示します。 4。機械学習とAI:Pythonは、インテリジェントWebアプリケーションを構築するために使用されます。 5。パフォーマンスの最適化:非同期プログラミング、キャッシュ、コードを通じて最適化

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SecLists
SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

PhpStorm Mac バージョン
最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

ZendStudio 13.5.1 Mac
強力な PHP 統合開発環境
