この記事では、主に PHP データ分析エンジンのコサイン類似度計算アルゴリズムを紹介し、PHP のコサイン類似度計算の操作手順と関連する実装テクニックを具体的な例の形式で分析します。この記事では PHP データについて説明します。 分析エンジンはコサイン類似度アルゴリズムを計算します。参考までに皆さんと共有してください。詳細は次のとおりです:
コサイン類似度の関連する概要については、Baidu百科事典: コサイン類似度を参照してください
<?php /** * 数据分析引擎 * 分析向量的元素 必须和基准向量的元素一致,取最大个数,分析向量不足元素以0填补。 * 求出分析向量与基准向量的余弦值 * @author yu.guo@okhqb.com */ /** * 获得向量的模 * @param unknown_type $array 传入分析数据的基准点的N维向量。|eg:array(1,1,1,1,1); */ function getMarkMod($arrParam){ $strModDouble = 0; foreach($arrParam as $val){ $strModDouble += $val * $val; } $strMod = sqrt($strModDouble); //是否需要保留小数点后几位 return $strMod; } /** * 获取标杆的元素个数 * @param unknown_type $arrParam * @return number */ function getMarkLenth($arrParam){ $intLenth = count($arrParam); return $intLenth; } /** * 对传入数组进行索引分配,基准点的索引必须为k,求夹角的向量索引必须为 'j'. * @param unknown_type $arrParam * @param unknown_type $index * @ruturn $arrBack */ function handIndex($arrParam, $index = 'k'){ foreach($arrParam as $key => $val){ $in = $index.$key; $arrBack[$in] = $val; } return $arrBack; } /** * * @param unknown_type $arrMark标杆向量数组(索引被处理过) * @param unknown_type $arrAnaly 分析向量数组 (索引被处理过) |array('j0'=>1,'j1'=>2....) * @param unknown_type $strMarkMod标杆向量的模 * @param unknown_type $intLenth 向量的长度 */ function getCosine($arrMark, $arrAnaly, $strMarkMod ,$intLenth){ $strVector = 0; $strCosine = 0; for($i = 0; $i < $intLenth; $i++){ $strMarkVal = $arrMark['k'.$i]; $strAnalyVal = $arrAnaly['j'.$i]; $strVector += $strMarkVal * $strAnalyVal; } $arrAnalyMod = getMarkMod($arrAnaly); //求分析向量的模 $strFenzi = $strVector; $strFenMu = $arrAnalyMod * $strMarkMod; $strCosine = $strFenzi / $strFenMu; if(0 !== (int)$strFenMu){ $strCosine = $strFenzi / $strFenMu; } return $strCosine; } ?>
以上がコサイン類似度を計算する PHP データ分析エンジンの詳細な例の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。