ホームページ >バックエンド開発 >Python チュートリアル >NumPy の一般的なメソッドのまとめ
NumPy は、Python 用のオープンソース数値計算拡張機能です。このツールを使用すると、Python 独自の入れ子になったリスト構造 (行列の表現にも使用できます) よりもはるかに効率的に大きな行列を保存および処理できます。 NumPy (Numeric Python) は、行列データ型、ベクトル処理、高度な算術ライブラリなど、多くの高度な数値プログラミング ツールを提供します。厳密な数値計算のために構築されています。これは主に多くの大手金融会社や、ローレンス リバモアなどの中核的な科学技術コンピューティング組織で使用されており、NASA は元々 C++、Fortran、または Matlab を使用して実行されていた一部のタスクを処理するためにこれを使用しています。
numpyのデータ型であるndarray型は、標準ライブラリのarray.arrayとは異なります。
>>> import numpy as np >>> a = np.array([2,3,4]) >>> a array([2, 3, 4]) >>> a.dtype dtype('int64') >>> b = np.array([1.2, 3.5, 5.1]) >>> b.dtype dtype('float64')
>>> b = np.array([(1.5,2,3), (4,5,6)]) >>> b array([[ 1.5, 2. , 3. ], [ 4. , 5. , 6. ]])
>>> c = np.array( [ [1,2], [3,4] ], dtype=complex ) >>> c array([[ 1.+0.j, 2.+0.j], [ 3.+0.j, 4.+0.j]])
>>> np.zeros( (3,4) ) array([[ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.]]) >>> np.ones( (2,3,4), dtype=np.int16 ) # dtype can also be specified array([[[ 1, 1, 1, 1], [ 1, 1, 1, 1], [ 1, 1, 1, 1]], [[ 1, 1, 1, 1], [ 1, 1, 1, 1], [ 1, 1, 1, 1]]], dtype=int16) >>> np.empty( (2,3) ) # uninitialized, output may vary array([[ 3.73603959e-262, 6.02658058e-154, 6.55490914e-260], [ 5.30498948e-313, 3.14673309e-307, 1.00000000e+000]])
>>> np.arange( 10, 30, 5 ) array([10, 15, 20, 25]) >>> np.arange( 0, 2, 0.3 ) # it accepts float arguments array([ 0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8]) >>> from numpy import pi >>> np.linspace( 0, 2, 9 ) # 9 numbers from 0 to 2 array([ 0. , 0.25, 0.5 , 0.75, 1. , 1.25, 1.5 , 1.75, 2. ]) >>> x = np.linspace( 0, 2*pi, 100 ) # useful to evaluate function at lots of points >>> f = np.sin(x)
>>> a = np.array( [20,30,40,50] ) >>> b = np.arange( 4 ) >>> b array([0, 1, 2, 3]) >>> c = a-b >>> c array([20, 29, 38, 47]) >>> b**2 array([0, 1, 4, 9]) >>> 10*np.sin(a) array([ 9.12945251, -9.88031624, 7.4511316 , -2.62374854]) >>> a<35 array([ True, True, False, False], dtype=bool)
matlabでは.*,./などがあります
しかし、numpyでは+、-、×、/を使うと加算が優先され、各点間の減算、乗算、除算
2 つの行列 (正方行列) が要素間の演算と行列演算を実行できる場合、要素間の演算が最初に実行されます
>>> import numpy as np >>> A = np.arange(10,20) >>> B = np.arange(20,30) >>> A + B array([30, 32, 34, 36, 38, 40, 42, 44, 46, 48]) >>> A * B array([200, 231, 264, 299, 336, 375, 416, 459, 504, 551]) >>> A / B array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) >>> B / A array([2, 1, 1, 1, 1, 1, 1, 1, 1, 1])
行列演算を実行する必要がある場合、通常は行列です乗算
>>> A = np.array([1,1,1,1]) >>> B = np.array([2,2,2,2]) >>> A.reshape(2,2) array([[1, 1], [1, 1]]) >>> B.reshape(2,2) array([[2, 2], [2, 2]]) >>> A * B array([2, 2, 2, 2]) >>> np.dot(A,B) 8 >>> A.dot(B) 8
>>> B = np.arange(3) >>> B array([0, 1, 2]) >>> np.exp(B) array([ 1. , 2.71828183, 7.3890561 ]) >>> np.sqrt(B) array([ 0. , 1. , 1.41421356]) >>> C = np.array([2., -1., 4.]) >>> np.add(B, C) array([ 2., 0., 6.])
>>> a = np.arange(10)**3 >>> a array([ 0, 1, 8, 27, 64, 125, 216, 343, 512, 729]) >>> a[2] 8 >>> a[2:5] array([ 8, 27, 64]) >>> a[:6:2] = -1000 # equivalent to a[0:6:2] = -1000; from start to position 6, exclusive, set every 2nd element to -1000 >>> a array([-1000, 1, -1000, 27, -1000, 125, 216, 343, 512, 729]) >>> a[ : :-1] # reversed a array([ 729, 512, 343, 216, 125, -1000, 27, -1000, 1, -1000]) >>> for i in a: ... print(i**(1/3.)) ... nan 1.0 nan 3.0 nan 5.0 6.0 7.0 8.0 9.0
>>> import numpy as np >>> b = np.arange(16).reshape(4, 4) >>> for row in b: ... print(row) ... [0 1 2 3] [4 5 6 7] [ 8 9 10 11] [12 13 14 15] >>> for node in b.flat: ... print(node) ... 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
>>> a = np.floor(10 * np.random.random((3,4))) >>> a array([[ 6., 5., 1., 5.], [ 5., 5., 8., 9.], [ 5., 5., 9., 7.]]) >>> a.ravel() array([ 6., 5., 1., 5., 5., 5., 8., 9., 5., 5., 9., 7.]) >>> a array([[ 6., 5., 1., 5.], [ 5., 5., 8., 9.], [ 5., 5., 9., 7.]])
size と reshape の違い
resize元の行列を変更します。変形は
>>> a array([[ 6., 5., 1., 5.], [ 5., 5., 8., 9.], [ 5., 5., 9., 7.]]) >>> a.reshape(2,-1) array([[ 6., 5., 1., 5., 5., 5.], [ 8., 9., 5., 5., 9., 7.]]) >>> a array([[ 6., 5., 1., 5.], [ 5., 5., 8., 9.], [ 5., 5., 9., 7.]]) >>> a.resize(2,6) >>> a array([[ 6., 5., 1., 5., 5., 5.], [ 8., 9., 5., 5., 9., 7.]])
>>> a = np.floor(10*np.random.random((2,2))) >>> a array([[ 8., 8.], [ 0., 0.]]) >>> b = np.floor(10*np.random.random((2,2))) >>> b array([[ 1., 8.], [ 0., 4.]]) >>> np.vstack((a,b)) array([[ 8., 8.], [ 0., 0.], [ 1., 8.], [ 0., 4.]]) >>> np.hstack((a,b)) array([[ 8., 8., 1., 8.], [ 0., 0., 0., 4.]])
以上がNumPy の一般的なメソッドのまとめの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。