ホームページ >バックエンド開発 >Python チュートリアル >Python での再帰的ニューラル ネットワーク実装の簡単な例の共有

Python での再帰的ニューラル ネットワーク実装の簡単な例の共有

黄舟
黄舟オリジナル
2017-08-11 14:00:572178ブラウズ

この記事は主に Python で実装された再帰ニューラル ネットワークを紹介します。これは Python の再帰と数学的演算に関する操作スキルを必要とする人は参照してください。 Pythonリカレントニューラルネットワークの実装。参考のためにみんなと共有してください。詳細は次のとおりです:

# Recurrent Neural Networks
import copy, numpy as np
np.random.seed(0)
# compute sigmoid nonlinearity
def sigmoid(x):
  output = 1/(1+np.exp(-x))
  return output
# convert output of sigmoid function to its derivative
def sigmoid_output_to_derivative(output):
  return output*(1-output)
# training dataset generation
int2binary = {}
binary_dim = 8
largest_number = pow(2,binary_dim)
binary = np.unpackbits(
  np.array([range(largest_number)],dtype=np.uint8).T,axis=1)
for i in range(largest_number):
  int2binary[i] = binary[i]
# input variables
alpha = 0.1
input_dim = 2
hidden_dim = 16
output_dim = 1
# initialize neural network weights
synapse_0 = 2*np.random.random((input_dim,hidden_dim)) - 1
synapse_1 = 2*np.random.random((hidden_dim,output_dim)) - 1
synapse_h = 2*np.random.random((hidden_dim,hidden_dim)) - 1
synapse_0_update = np.zeros_like(synapse_0)
synapse_1_update = np.zeros_like(synapse_1)
synapse_h_update = np.zeros_like(synapse_h)
# training logic
for j in range(10000):
  # generate a simple addition problem (a + b = c)
  a_int = np.random.randint(largest_number/2) # int version
  a = int2binary[a_int] # binary encoding
  b_int = np.random.randint(largest_number/2) # int version
  b = int2binary[b_int] # binary encoding
  # true answer
  c_int = a_int + b_int
  c = int2binary[c_int]
  # where we'll store our best guess (binary encoded)
  d = np.zeros_like(c)
  overallError = 0
  layer_2_deltas = list()
  layer_1_values = list()
  layer_1_values.append(np.zeros(hidden_dim))
  # moving along the positions in the binary encoding
  for position in range(binary_dim):
    # generate input and output
    X = np.array([[a[binary_dim - position - 1],b[binary_dim - position - 1]]])
    y = np.array([[c[binary_dim - position - 1]]]).T
    # hidden layer (input ~+ prev_hidden)
    layer_1 = sigmoid(np.dot(X,synapse_0) + np.dot(layer_1_values[-1],synapse_h))
    # output layer (new binary representation)
    layer_2 = sigmoid(np.dot(layer_1,synapse_1))
    # did we miss?... if so, by how much?
    layer_2_error = y - layer_2
    layer_2_deltas.append((layer_2_error)*sigmoid_output_to_derivative(layer_2))
    overallError += np.abs(layer_2_error[0])
    # decode estimate so we can print(it out)
    d[binary_dim - position - 1] = np.round(layer_2[0][0])
    # store hidden layer so we can use it in the next timestep
    layer_1_values.append(copy.deepcopy(layer_1))
  future_layer_1_delta = np.zeros(hidden_dim)
  for position in range(binary_dim):
    X = np.array([[a[position],b[position]]])
    layer_1 = layer_1_values[-position-1]
    prev_layer_1 = layer_1_values[-position-2]
    # error at output layer
    layer_2_delta = layer_2_deltas[-position-1]
    # error at hidden layer
    layer_1_delta = (future_layer_1_delta.dot(synapse_h.T) + layer_2_delta.dot(synapse_1.T)) * sigmoid_output_to_derivative(layer_1)
    # let's update all our weights so we can try again
    synapse_1_update += np.atleast_2d(layer_1).T.dot(layer_2_delta)
    synapse_h_update += np.atleast_2d(prev_layer_1).T.dot(layer_1_delta)
    synapse_0_update += X.T.dot(layer_1_delta)
    future_layer_1_delta = layer_1_delta
  synapse_0 += synapse_0_update * alpha
  synapse_1 += synapse_1_update * alpha
  synapse_h += synapse_h_update * alpha
  synapse_0_update *= 0
  synapse_1_update *= 0
  synapse_h_update *= 0
  # print(out progress)
  if j % 1000 == 0:
    print("Error:" + str(overallError))
    print("Pred:" + str(d))
    print("True:" + str(c))
    out = 0
    for index,x in enumerate(reversed(d)):
      out += x*pow(2,index)
    print(str(a_int) + " + " + str(b_int) + " = " + str(out))
    print("------------")

実行出力:

Error:[ 3.45638663]
Pred:[0 0 0 0 0 0 0 1]
True:[0 1 0 0 0 1 0 1]
9 + 60 = 1
------------
Error:[ 3.63389116]
Pred:[1 1 1 1 1 1 1 1]
True:[0 0 1 1 1 1 1 1]
28 + 35 = 255
------------
Error:[ 3.91366595]
Pred:[0 1 0 0 1 0 0 0]
True:[1 0 1 0 0 0 0 0]
116 + 44 = 72
------------
Error:[ 3.72191702]
Pred:[1 1 0 1 1 1 1 1]
True:[0 1 0 0 1 1 0 1]
4 + 73 = 223
------------
Error:[ 3.5852713]
Pred:[0 0 0 0 1 0 0 0]
True:[0 1 0 1 0 0 1 0]
71 + 11 = 8
------------
Error:[ 2.53352328]
Pred:[1 0 1 0 0 0 1 0]
True:[1 1 0 0 0 0 1 0]
81 + 113 = 162
------------
Error:[ 0.57691441]
Pred:[0 1 0 1 0 0 0 1]
True:[0 1 0 1 0 0 0 1]
81 + 0 = 81
------------
Error:[ 1.42589952]
Pred:[1 0 0 0 0 0 0 1]
True:[1 0 0 0 0 0 0 1]
4 + 125 = 129
------------
Error:[ 0.47477457]
Pred:[0 0 1 1 1 0 0 0]
True:[0 0 1 1 1 0 0 0]
39 + 17 = 56
------------
Error:[ 0.21595037]
Pred:[0 0 0 0 1 1 1 0]
True:[0 0 0 0 1 1 1 0]
11 + 3 = 14
------------

以上がPython での再帰的ニューラル ネットワーク実装の簡単な例の共有の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明:
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。