検索
ホームページバックエンド開発Python チュートリアルインメモリデータのシリアル化の例

インメモリデータのシリアル化の例

Jul 23, 2017 am 10:07 AM
javascriptjsonpickle

1. 目的

メモリ内のデータをシリアル化する必要があります。つまり、ファイルに書き込む場合、書き込まれる型は文字列型またはバイナリ型のみです。ただし、リスト、辞書、関数など、より複雑なデータ型をシリアル化したい場合は、json または pickle を使用する必要があります。

2. jsonシリアル化

1、シリアル化をダンプし、逆シリアル化をロードします

dumpsはデータ型を文字列に変換します

import json

info = {
    'name': 'The Count of Monte Cristo',
    'type': 'Movie'
}

data = json.dumps(info)
print(data)
print(type(data))

# 输出
{"name": "The Count of Monte Cristo", "type": "Movie"}
<class &#39;str&#39;>

loadsは文字列をデータ型に変換します

import json

get_info = json.loads(data)
print(get_info[&#39;name&#39;])
print(get_info)
print(type(get_info))

#输出
The Count of Monte Cristo
{&#39;name&#39;: &#39;The Count of Monte Cristo&#39;, &#39;type&#39;: &#39;Movie&#39;}
<class &#39;dict&#39;> 

2 .dumpシリアル化とload deserialization

dumpはデータ型を文字列に変換してファイルに保存します

import json

info = {
    &#39;name&#39;: &#39;The Count of Monte Cristo&#39;,
    &#39;type&#39;: &#39;Movie&#39;
}

with open("test.txt", "w", encoding="utf-8") as f:
    json.dump(info, f)  # 第一个参数是内存中的数据对象,第二个参数是文件句柄

#写入文件中的内容
{"name": "The Count of Monte Cristo", "type": "Movie"}

loadはファイルを開き文字列からデータ型に変換します

import json


with open("test.txt", "r", encoding="utf-8") as f:
    data_from_file = json.load(f)

print(data_from_file[&#39;name&#39;])
print(data_from_file)
print(type(data_from_file))

#输出
The Count of Monte Cristo
{&#39;name&#39;: &#39;The Count of Monte Cristo&#39;, &#39;type&#39;: &#39;Movie&#39;}
<class &#39;dict&#39;>

3.json関数をシリアル化します

import json

def test(name):
    print("hello,{}".format(name))

info = {
    &#39;name&#39;: &#39;The Count of Monte Cristo&#39;,
    &#39;type&#39;: &#39;Movie&#39;,
    &#39;func&#39;: test
}

data = json.dumps(info)

#输出
 File "G:/python/untitled/study6/json&pickle模块.py", line 22, in <module>
    data = json.dumps(info)
  File "G:\python\install\lib\json\__init__.py", line 230, in dumps
    return _default_encoder.encode(obj)
  File "G:\python\install\lib\json\encoder.py", line 198, in encode
    chunks = self.iterencode(o, _one_shot=True)
  File "G:\python\install\lib\json\encoder.py", line 256, in iterencode
    return _iterencode(o, 0)
  File "G:\python\install\lib\json\encoder.py", line 179, in default
    raise TypeError(repr(o) + " is not JSON serializable")
TypeError: <function test at 0x0000021B13C57F28> is not JSON serializable

1. JSON は辞書、リスト、文字列などの単純なデータ型のみを処理でき、関数などの複雑なデータ型は処理できません。

2. jsonはすべての言語に共通であり、Pythonが他の言語とデータをやり取りする必要がある場合は、json形式を使用します

3. pickleシリアル化。

pickle 使い方は上記と同じですが、pickleでシリアル化されるデータ型はバイナリであり、pickleはPythonでのみ使用できます。

1.ダンプ&&ロード

import pickle


def test(name):
    print("hello,{}".format(name))

info = {
    &#39;name&#39;: &#39;The Count of Monte Cristo&#39;,
    &#39;type&#39;: &#39;Movie&#39;,
    &#39;func&#39;: test
}

data = pickle.dumps(info)
print(data)
print(type(data))

#输出
b&#39;\x80\x03}q\x00(X\x04\x00\x00\x00nameq\x01X\x19\x00\x00\x00The Count of Monte Cristoq\x02X\x04\x00\x00\x00typeq\x03X\x05\x00\x00\x00Movieq\x04X\x04\x00\x00\x00funcq\x05c__main__\ntest\nq\x06u.&#39;

<class &#39;bytes&#39;>

import pickle

get_data = pickle.loads(data)
get_data[&#39;func&#39;](&#39;cat&#39;)
print(get_data)

#输出
hello,cat
{&#39;name&#39;: &#39;The Count of Monte Cristo&#39;, &#39;type&#39;: &#39;Movie&#39;, &#39;func&#39;: <function test at 0x00000235350A7F28>}

2.ダンプ&&ロード

import pickle


def test(name):
    print("hello,{}".format(name))

info = {
    &#39;name&#39;: &#39;The Count of Monte Cristo&#39;,
    &#39;type&#39;: &#39;Movie&#39;,
    &#39;func&#39;: test
}

with open(&#39;test.txt&#39;, &#39;wb&#39;) as f:
    pickle.dump(info, f)

# 写入test.txt文件中的内容

�}q (X   typeqX   MovieqX   funcqc__main__
test
qX   nameqX   The Count of Monte Cristoqu.

import pickle

with open(&#39;test.txt&#39;, &#39;rb&#39;) as f:
    get_data = pickle.load(f)
print(get_data)

# 输出

{&#39;name&#39;: &#39;The Count of Monte Cristo&#39;, &#39;func&#39;: <function test at 0x000001BA2AB4D510>, &#39;type&#39;: &#39;Movie&#39;}

概要:

  • json 値は単純なデータ型をサポートします、pickle はすべてのデータ型をサポートします。

  • pickle は Python 自体のシリアル化と逆シリアル化のみをサポートしており、他の言語とのデータ対話には使用できませんが、json はサポートできます。

  • pickle はデータ オブジェクト全体をシリアル化するため、関数を逆シリアル化すると、関数本体のロジックが変更され、元の関数本体に従います。

以上がインメモリデータのシリアル化の例の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
Python vs. C:比較されたアプリケーションとユースケースPython vs. C:比較されたアプリケーションとユースケースApr 12, 2025 am 12:01 AM

Pythonは、データサイエンス、Web開発、自動化タスクに適していますが、Cはシステムプログラミング、ゲーム開発、組み込みシステムに適しています。 Pythonは、そのシンプルさと強力なエコシステムで知られていますが、Cは高性能および基礎となる制御機能で知られています。

2時間のPython計画:現実的なアプローチ2時間のPython計画:現実的なアプローチApr 11, 2025 am 12:04 AM

2時間以内にPythonの基本的なプログラミングの概念とスキルを学ぶことができます。 1.変数とデータ型、2。マスターコントロールフロー(条件付きステートメントとループ)、3。機能の定義と使用を理解する4。

Python:主要なアプリケーションの調査Python:主要なアプリケーションの調査Apr 10, 2025 am 09:41 AM

Pythonは、Web開発、データサイエンス、機械学習、自動化、スクリプトの分野で広く使用されています。 1)Web開発では、DjangoおよびFlask Frameworksが開発プロセスを簡素化します。 2)データサイエンスと機械学習の分野では、Numpy、Pandas、Scikit-Learn、Tensorflowライブラリが強力なサポートを提供します。 3)自動化とスクリプトの観点から、Pythonは自動テストやシステム管理などのタスクに適しています。

2時間でどのくらいのPythonを学ぶことができますか?2時間でどのくらいのPythonを学ぶことができますか?Apr 09, 2025 pm 04:33 PM

2時間以内にPythonの基本を学ぶことができます。 1。変数とデータ型を学習します。2。ステートメントやループの場合などのマスター制御構造、3。関数の定義と使用を理解します。これらは、簡単なPythonプログラムの作成を開始するのに役立ちます。

プロジェクトの基本と問題駆動型の方法で10時間以内にコンピューター初心者プログラミングの基本を教える方法は?プロジェクトの基本と問題駆動型の方法で10時間以内にコンピューター初心者プログラミングの基本を教える方法は?Apr 02, 2025 am 07:18 AM

10時間以内にコンピューター初心者プログラミングの基本を教える方法は?コンピューター初心者にプログラミングの知識を教えるのに10時間しかない場合、何を教えることを選びますか...

中間の読書にどこでもfiddlerを使用するときにブラウザによって検出されないようにするにはどうすればよいですか?中間の読書にどこでもfiddlerを使用するときにブラウザによって検出されないようにするにはどうすればよいですか?Apr 02, 2025 am 07:15 AM

fiddlereveryversings for the-middleの測定値を使用するときに検出されないようにする方法

Python 3.6にピクルスファイルをロードするときに「__Builtin__」モジュールが見つからない場合はどうすればよいですか?Python 3.6にピクルスファイルをロードするときに「__Builtin__」モジュールが見つからない場合はどうすればよいですか?Apr 02, 2025 am 07:12 AM

Python 3.6のピクルスファイルのロードレポートエラー:modulenotFounderror:nomodulenamed ...

風光明媚なスポットコメント分析におけるJieba Wordセグメンテーションの精度を改善する方法は?風光明媚なスポットコメント分析におけるJieba Wordセグメンテーションの精度を改善する方法は?Apr 02, 2025 am 07:09 AM

風光明媚なスポットコメント分析におけるJieba Wordセグメンテーションの問題を解決する方法は?風光明媚なスポットコメントと分析を行っているとき、私たちはしばしばJieba Wordセグメンテーションツールを使用してテキストを処理します...

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SecLists

SecLists

SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

PhpStorm Mac バージョン

PhpStorm Mac バージョン

最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強力な PHP 統合開発環境

SublimeText3 Linux 新バージョン

SublimeText3 Linux 新バージョン

SublimeText3 Linux 最新バージョン