クロージャは関数型プログラミングにおける重要な文法構造です。クロージャはコードを整理するための構造でもあり、コードの再利用性も向上します。
インライン関数内で、外部関数の変数 (ただし、グローバル スコープ内ではない) が参照される場合、そのインライン関数はクロージャとみなされます。
外部関数内で定義されているが、内部関数によって参照または使用される変数は、自由変数と呼ばれます。
要約すると、クロージャの作成は次の点を満たす必要があります:
1. インライン関数が存在する必要があります
2. インライン関数は外部関数内の変数を参照する必要があります
3.関数の戻り値は埋め込み関数である必要があります
1. クロージャの使用例
まずクロージャの例を見てみましょう:
In [10]: def func(name): ...: def in_func(age): ...: print 'name:',name,'age:',age ...: return in_func ...: In [11]: demo = func('feiyu')In [12]: demo(19) name: feiyu age: 19
ここで、func
が呼び出されるとき、クロージャは次のようになります。生成されたパッケージ - in_func
であり、クロージャーは自由変数 - name
を保持します。つまり、これは、関数 func
のライフサイクルが終了するときも意味します。終了しても、変数 name
はクロージャによって参照されているためまだ存在しており、リサイクルされません。 func
的时候就产生了一个闭包——in_func
,并且该闭包持有自由变量——name
,因此这也意味着,当函数func
的生命周期结束之后,name
这个变量依然存在,因为它被闭包引用了,所以不会被回收。
在 python
的函数内,可以直接引用外部变量,但不能改写外部变量,因此如果在闭包中直接改写父函数的变量,就会发生错误。看以下示例:
实现一个计数闭包的例子:
def counter(start=0):count = [start] def incr():count[0] += 1return countreturn incr a = counter() print 'a:',aIn [32]: def counter(start=0): ...: count = start ...: def incr(): ...: count += 1 ...: return count ...: return incr ...: In [33]: a = counter()In [35]: a() #此处会报错 UnboundLocalError: local variable 'count' referenced before assignment
应该像下面这样使用:
In [36]: def counter(start=0): ...: count = [start] ...: def incr(): ...: count[0] += 1 ...: return count ...: return incr ...: In [37]: count = counter(5) In [38]: for i in range(10): ...: print count(), ...: [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]
2.使用闭包的陷阱
In [1]: def create(): ...: return [lambda x:i*x for i in range(5)] #推导式生成一个匿名函数的列表 ...: In [2]: create()Out[2]: [<function __main__.<lambda>>, <function __main__.<lambda>>, <function __main__.<lambda>>, <function __main__.<lambda>>, <function __main__.<lambda>>]In [4]: for mul in create(): ...: print mul(2) ...: 88888
结果是不是很奇怪,这算是闭包使用中的一个陷阱吧!来看看为什么?
在上面的代码当中,函数create
返回一个list
里面保存了4个函数变量,这4个函数都共同的引用了循环变量i
, 也就是说它们共享着同一个变量i
,i
是会改变的,当函数调用时,循环变量i
已经是等于4了,因此4个函数返回的都是8。如果,需要在闭包使用循环变量的值的话,把循环变量作为闭包的默认参数或者是通过偏函数来实现。实现的原理也很简单,就是当把循环变量当参数传入函数时,会申请新的内存。示例代码如下:
In [5]: def create(): ...: return [lambda x,i=i:i*x for i in range(5)] ...: In [7]: for mul in create(): ...: print mul(2) ...: 02468
3,闭包与装饰器
装饰器就是一种的闭包的应用,只不过其传递的是函数:
def addb(func):def wrapper():return '<b>' + func() + '</b>'return wrapperdef addli(func):def wrapper():return '<li>' + func() + '</li>'return wrapper @addb # 等同于 demo = addb(addli(demo)) @addli # 等同于 demo = addli(demo)def demo():return 'hello world' print demo() # 执行的是 addb(addku(demo))
在执行时,首先将demo
函数传递给addli
进行装饰,然后将装饰后的函数传递给addb
进行装饰。所以最后返回的结果是:
<b><li>hello world</li></b>
4.装饰器中的陷阱
当你写了一个装饰器作用在某个函数上,这个函数的重要的元信息比如名字、文档字符串、注解和参数签名都会丢失。
def out_func(func):def wrapper(): func()return wrapper@out_funcdef demo():""" this is a demo. """print 'hello world.'if __name__ == '__main__': demo()print "__name__:",demo.__name__print "__doc__:",demo.__doc__
看结果:
hello world.__name__: wrapper__doc__: None
函数名字和文档字符串都变成了闭包的信息。好在可以使用 functools
库中的 @wraps
python
の関数では、外部変数を直接参照することはできますが、外部変数を書き換えることはできないため、クロージャ内で親関数の変数を直接書き換えるとエラーが発生します。次の例を見てください: カウント クロージャの実装例: 🎜from functools import wrapsdef out_func(func): @wraps(func)def wrapper(): func()return wrapper🎜 は次のように使用する必要があります: 🎜rrreee🎜2. クロージャの使用の罠🎜rrreee🎜 これは使用方法の 1 つです。トラップしてください!その理由を見てみましょう? 🎜🎜上記のコードでは、関数
create
は 4 つの関数変数を含む list
を返します。これらの 4 つの関数はすべてループ変数 i
を参照します。つまり、同じ変数 i
を共有し、関数が呼び出されると、ループ変数 i
が変更されます。これはすでに 4 に等しいため、4 つの関数はすべて 8 を返します。クロージャでループ変数の値を使用する必要がある場合は、ループ変数をクロージャのデフォルトパラメータとして使用するか、部分関数を通じて実装します。実装原理も非常に単純です。つまり、ループ変数がパラメータとして関数に渡されると、新しいメモリが適用されます。サンプルコードは以下の通りです: 🎜rrreee🎜3、クロージャとデコレータ 🎜🎜デコレータはクロージャアプリケーションの一種ですが、関数を渡します: 🎜rrreee🎜実行時、最初にdemo コード>関数が渡されます。装飾のために <code>addli
に渡され、装飾された関数が装飾のために addb
に渡されます。したがって、返される最終結果は次のとおりです:🎜rrreee🎜 4. デコレータの罠🎜🎜 関数に作用するデコレータを作成すると、名前、ドキュメント文字列、注釈、パラメータなどのこの関数の重要なメタ情報が失われます。 。 🎜rrreee🎜結果を見てください: 🎜rrreee🎜関数名とドキュメント文字列がクロージャ情報になりました。幸いなことに、functools
ライブラリの @wraps
デコレータを使用して、基礎となるラッパー関数に注釈を付けることができます。 🎜rreee🎜結果を自分で試してみてください! 🎜以上がPythonのクロージャとデコレータの詳しい説明の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

PythonとCは、メモリ管理と制御に大きな違いがあります。 1。Pythonは、参照カウントとガベージコレクションに基づいて自動メモリ管理を使用し、プログラマーの作業を簡素化します。 2.Cには、メモリの手動管理が必要であり、より多くの制御を提供しますが、複雑さとエラーのリスクが増加します。どの言語を選択するかは、プロジェクトの要件とチームテクノロジースタックに基づいている必要があります。

科学コンピューティングにおけるPythonのアプリケーションには、データ分析、機械学習、数値シミュレーション、視覚化が含まれます。 1.numpyは、効率的な多次元配列と数学的関数を提供します。 2。ScipyはNumpy機能を拡張し、最適化と線形代数ツールを提供します。 3. Pandasは、データ処理と分析に使用されます。 4.matplotlibは、さまざまなグラフと視覚的な結果を生成するために使用されます。

PythonまたはCを選択するかどうかは、プロジェクトの要件に依存するかどうかは次のとおりです。1)Pythonは、簡潔な構文とリッチライブラリのため、迅速な発展、データサイエンス、スクリプトに適しています。 2)Cは、コンピレーションと手動メモリ管理のため、システムプログラミングやゲーム開発など、高性能および基礎となる制御を必要とするシナリオに適しています。

Pythonは、データサイエンスと機械学習で広く使用されており、主にそのシンプルさと強力なライブラリエコシステムに依存しています。 1)Pandasはデータ処理と分析に使用され、2)Numpyが効率的な数値計算を提供し、3)SCIKIT-LEARNは機械学習モデルの構築と最適化に使用されます。これらのライブラリは、Pythonをデータサイエンスと機械学習に理想的なツールにします。

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

Web開発におけるPythonの主要なアプリケーションには、DjangoおよびFlaskフレームワークの使用、API開発、データ分析と視覚化、機械学習とAI、およびパフォーマンスの最適化が含まれます。 1。DjangoandFlask Framework:Djangoは、複雑な用途の迅速な発展に適しており、Flaskは小規模または高度にカスタマイズされたプロジェクトに適しています。 2。API開発:フラスコまたはdjangorestFrameworkを使用して、Restfulapiを構築します。 3。データ分析と視覚化:Pythonを使用してデータを処理し、Webインターフェイスを介して表示します。 4。機械学習とAI:Pythonは、インテリジェントWebアプリケーションを構築するために使用されます。 5。パフォーマンスの最適化:非同期プログラミング、キャッシュ、コードを通じて最適化

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

Dreamweaver Mac版
ビジュアル Web 開発ツール

メモ帳++7.3.1
使いやすく無料のコードエディター

mPDF
mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。

Safe Exam Browser
Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。
