検索
ホームページデータベースmysql チュートリアルbinlog に基づいて mysql 行レコードの変更を分析する

最近 mysql フラッシュバックを書き終えたところ、次のような使用シナリオがあることに突然気づきました: 場合によっては、MySQL が一定期間内に変更したデータの量が計算される可能性があります。トランザクションは何件発生しましたか?主にどのフォームが変更されますか?変化量はいくらですか?ただし、行レコードを変更する必要はなく、行データの変更を把握するだけで済みます。ということで私も整理してみました。

私が昨晩書いたスクリプト。私のPythonの能力が限られているため、最初はこの記事を投稿しないつもりでしたが、もしかしたら庭の友人が最適化の提案をしてくれるかもしれないと思いました。

1 実装内容

場合によっては、MySQLが一定期間内にどれだけのデータを変更したかを計算することもある?トランザクションは何件発生しましたか?主にどのテーブルが変更されますか?変化量はいくらですか?ただし、行レコードを変更する必要はなく、行データの変更を把握するだけで済みます。

これらの状況の一部はモニタリングを通じて大まかに理解できますが、binlog の形式は行モードです。

ちなみにこのステップもPythonで書いていますが、私のPythonが下手なので、もっと簡単です。パフォーマンスの向上のために、Garden の友人が最適化に協力してくれることを願っています。

まず、Pythonスクリプトの分析結果を以下のように掲載します。トランザクション消費時間、トランザクションの影響を受けた行数、DML行数、最も頻繁に操作されたテーブルのテーブル状態の4つに分かれています。

2 スクリプトの簡単な説明

スクリプトが依存するモジュールのうち、pymysqlは自分でインストールする必要があります

queryanalyse クラスを作成します。このクラスには、_get_db、create_tab、rowrec

ord、binlogdesc、closeconn の 5 つの関数が定義されています。

2.1 _get_db

この関数は、入力パラメーター値を解析するために使用され、合計 7 つのパラメーター値をすべて入力する必要があります。それらはホスト、ユーザー、パスワード、ポート、

transactionのテーブル名、レコードのテーブル名です:


すべてのオプションは次のように割り当てる必要があります:

-h : host,データベースホスト、分析後に結果を保存するデータベース

-u : ユーザー、DB ユーザー

-p : パスワード、DB ユーザーのパスワード

-P : ポート、DB ポート

-f :

ファイル

path 、binlog ファイル-tr : レコードのテーブル名、行を保存するテーブル名

-tt : トランザクションのテーブル名、トランザクションを保存するテーブル名

たとえば、スクリプトを実行します: python queryanalyse.py - h=127.0.0.1 -P=3310 -u=root -p=password -f=/tmp/stock_binlog.log -tt=flashback.tbtran -tr=flashback.tbrow、この関数は、各オプションのパラメータ値とストア。

2.2 create_tab binlog ファイルの分析結果を保存するテーブルを 2 つ作成します。 1 つはトランザクションの実行開始時刻と終了時刻を格納するために使用され、テーブル名はオプション -tt によって割り当てられ、もう 1 つはレコードの各行の変更を格納するために使用され、テーブル名はオプション -tt によって割り当てられます。オプション-tr。

トランザクションテーブルレコードの内容: トランザクション開始時刻とトランザクション終了時刻。

行レコードテーブルの内容: ライブラリ名、テーブル名、DML タイプ、トランザクションに対応するトランザクションテーブルの番号。

root@localhost:mysql3310.sock  14:42:29 [flashback]>show create table tbrow \G*************************** 1. row ***************************
       Table: tbrowCreate Table: CREATE TABLE `tbrow` (
  `auto_id` int(10) unsigned NOT NULL AUTO_INCREMENT,
  `sqltype` int(11) NOT NULL COMMENT '1 is insert,2 is update,3 is delete',
  `tran_num` int(11) NOT NULL COMMENT 'the transaction number',
  `dbname` varchar(50) NOT NULL,
  `tbname` varchar(50) NOT NULL,  PRIMARY KEY (`auto_id`),  KEY `sqltype` (`sqltype`),  KEY `dbname` (`dbname`),  KEY `tbname` (`tbname`)
) ENGINE=InnoDB AUTO_INCREMENT=295151 DEFAULT CHARSET=utf81 row in set (0.00 sec)
 
root@localhost:mysql3310.sock  14:42:31 [flashback]>SHOW CREATE TABLE TBTRAN \G*************************** 1. row ***************************
       Table: TBTRANCreate Table: CREATE TABLE `tbtran` (
  `auto_id` int(10) unsigned NOT NULL AUTO_INCREMENT,
  `begin_time` datetime NOT NULL,
  `end_time` datetime NOT NULL,  PRIMARY KEY (`auto_id`)
) ENGINE=InnoDB AUTO_INCREMENT=6390 DEFAULT CHARSET=utf81 row in set (0.00 sec)

2.3 rowrecord 主な機能は、binlog ファイルの内容を分析することです。ここにいくつかのルールがあります:

  1. 每个事务的结束点,是以 'Xid = ' 来查找

    1. 事务的开始时间,是事务内的第一个 'Table_map' 行里边的时间

    2. 事务的结束时间,是以 'Xid = '所在行的 里边的时间

  2. 每个行数据是属于哪个表格,是以 'Table_map'来查找

  3. DML的类型是按照 行记录开头的情况是否为:'### INSERT INTO'  、'### UPDATE' 、'### DELETE FROM' 

  4. 注意,单个事务可以包含多个表格多种DML多行数据修改的情况。

2.4 binlogdesc

    描述分析结果,简单4个SQL分析。

  1. 分析修改行数据的 事务耗时情况

  2. 分析修改行数据的 事务影响行数情况

  3. 分析DML分布情况

  4. 分析 最多DML操作的表格 ,取前十个分析

2.5 closeconn

    关闭数据库连接。

3 使用说明

    首先,确保python安装了pymysql模块,把python脚本拷贝到文件 queryanalyse.py。

    然后,把要分析的binlog文件先用 mysqlbinlog 指令分析存储,具体binlog的文件说明,可以查看之前的博文:关于binary log那些事——认真码了好长一篇。mysqlbinlog的指令使用方法,可以详细查看文档:https://dev.mysql.com/doc/refman/5.7/en/mysqlbinlog.html 。

    比较常用通过指定开始时间跟结束时间来分析 binlog文件。


mysqlbinlog --start-datetime='2017-04-23 00:00:03' --stop-datetime='2017-04-23 00:30:00' --base64-output=decode-rows -v /data/mysql/logs/mysql-bin.007335 > /tmp/binlog_test.log   

    分析后,可以把这个 binlog_test.log文件拷贝到其他空闲服务器执行分析,只需要有个空闲的DB来存储分析记录即可。

    假设这个时候,拷贝 binlog_test.log到测试服务器上,测试服务器上的数据库可以用来存储分析内容,则可以执行python脚本了,注意要进入到python脚本的目录中,或者指定python脚本路径。


python queryanalyse.py -h=127.0.0.1 -P=3310 -u=root -p=password -f= /tmp/binlog_test.log -tt=flashback.tbtran -tr=flashback.tbrow

    没了,就等待输出吧。

    性能是硬伤,在虚拟机上测试,大概500M的binlog文件需要分析2-3min,有待提高!

4 python脚本

  1 import pymysql  2 from pymysql.cursors import DictCursor  3 import re  4 import os  5 import sys  6 import datetime  7 import time  8 import logging  9 import importlib 10 importlib.reload(logging) 11 logging.basicConfig(level=logging.DEBUG,format='%(asctime)s %(levelname)s %(message)s ') 12  13  14 usage=''' usage: python [script's path] [option] 15 ALL options need to assign: 16  17 -h     : host, the database host,which database will store the results after analysis 
 18 -u     : user, the db user 19 -p     : password, the db user's password 20 -P     : port, the db port 21 -f     : file path, the binlog file 22 -tr    : table name for record , the table name to store the row record 23 -tt    : table name for transaction, the table name to store transactions 24 Example: python queryanalyse.py -h=127.0.0.1 -P=3310 -u=root -p=password -f=/tmp/stock_binlog.log -tt=flashback.tbtran -tr=flashback.tbrow 25  26 ''' 27  28 class queryanalyse: 29     def init(self): 30         #初始化 31         self.host='' 32         self.user='' 33         self.password='' 34         self.port='3306' 35         self.fpath='' 36         self.tbrow='' 37         self.tbtran='' 38  39         self._get_db() 40         logging.info('assign values to parameters is done:host={},user={},password=***,port={},fpath={},tb_for_record={},tb_for_tran={}'.format(self.host,self.user,self.port,self.fpath,self.tbrow,self.tbtran)) 41  42         self.mysqlconn = pymysql.connect(host=self.host, user=self.user, password=self.password, port=self.port,charset='utf8') 43         self.cur = self.mysqlconn.cursor(cursor=DictCursor) 44         logging.info('MySQL which userd to store binlog event connection is ok') 45  46         self.begin_time='' 47         self.end_time='' 48         self.db_name='' 49         self.tb_name='' 50  51     def _get_db(self): 52         #解析用户输入的选项参数值,这里对password的处理是明文输入,可以自行处理成是input格式, 53         #由于可以拷贝binlog文件到非线上环境分析,所以password这块,没有特殊处理 54         logging.info('begin to assign values to parameters') 55         if len(sys.argv) == 1: 56             print(usage) 57             sys.exit(1) 58         elif sys.argv[1] == '--help': 59             print(usage) 60             sys.exit() 61         elif len(sys.argv) > 2: 62             for i in sys.argv[1:]: 63                 _argv = i.split('=') 64                 if _argv[0] == '-h': 65                     self.host = _argv[1] 66                 elif _argv[0] == '-u': 67                     self.user = _argv[1] 68                 elif _argv[0] == '-P': 69                     self.port = int(_argv[1]) 70                 elif _argv[0] == '-f': 71                     self.fpath = _argv[1] 72                 elif _argv[0] == '-tr': 73                     self.tbrow = _argv[1] 74                 elif _argv[0] == '-tt': 75                     self.tbtran = _argv[1] 76                 elif _argv[0] == '-p': 77                     self.password = _argv[1] 78                 else: 79                     print(usage) 80  81     def create_tab(self): 82         #创建两个表格:一个用户存储事务情况,一个用户存储每一行数据修改的情况 83         #注意,一个事务可以存储多行数据修改的情况 84         logging.info('creating table ...') 85         create_tb_sql ='''CREATE TABLE IF NOT EXISTS  {} ( 86                           `auto_id` int(10) unsigned NOT NULL AUTO_INCREMENT, 87                           `begin_time` datetime NOT NULL, 88                           `end_time` datetime NOT NULL, 89                           PRIMARY KEY (`auto_id`) 90                         ) ENGINE=InnoDB DEFAULT CHARSET=utf8; 91                         CREATE TABLE IF NOT EXISTS  {} ( 92                           `auto_id` int(10) unsigned NOT NULL AUTO_INCREMENT, 93                           `sqltype` int(11) NOT NULL COMMENT '1 is insert,2 is update,3 is delete', 94                           `tran_num` int(11) NOT NULL COMMENT 'the transaction number', 95                           `dbname` varchar(50) NOT NULL, 96                           `tbname` varchar(50) NOT NULL, 97                           PRIMARY KEY (`auto_id`), 98                           KEY `sqltype` (`sqltype`), 99                           KEY `dbname` (`dbname`),100                           KEY `tbname` (`tbname`)101                         ) ENGINE=InnoDB DEFAULT CHARSET=utf8;102                         truncate table {};103                         truncate table {};104                         '''.format(self.tbtran,self.tbrow,self.tbtran,self.tbrow)105 106         self.cur.execute(create_tb_sql)107         logging.info('created table {} and {}'.format(self.tbrow,self.tbtran))108 109     def rowrecord(self):110         #处理每一行binlog111         #事务的结束采用 'Xid =' 来划分112         #分析结果,按照一个事务为单位存储提交一次到db113         try:114             tran_num=1    #事务数115             record_sql='' #行记录的insert sql116             tran_sql=''   #事务的insert sql117 118             self.create_tab()119 120             with open(self.fpath,'r') as binlog_file:121                 logging.info('begining to analyze the binlog file ,this may be take a long time !!!')122                 logging.info('analyzing...')123 124                 for bline in binlog_file:125 126                     if bline.find('Table_map:') != -1:127                         l = bline.index('server')128                         n = bline.index('Table_map')129                         begin_time = bline[:l:].rstrip(' ').replace('#', '20')130 131                         if record_sql=='':132                             self.begin_time = begin_time[0:4] + '-' + begin_time[4:6] + '-' + begin_time[6:]133 134                         self.db_name = bline[n::].split(' ')[1].replace('`', '').split('.')[0]135                         self.tb_name = bline[n::].split(' ')[1].replace('`', '').split('.')[1]136                         bline=''137 138                     elif bline.startswith('### INSERT INTO'):139                        record_sql=record_sql+"insert into {}(sqltype,tran_num,dbname,tbname) VALUES (1,{},'{}','{}');".format(self.tbrow,tran_num,self.db_name,self.tb_name)140 141                     elif bline.startswith('### UPDATE'):142                        record_sql=record_sql+"insert into {}(sqltype,tran_num,dbname,tbname) VALUES (2,{},'{}','{}');".format(self.tbrow,tran_num,self.db_name,self.tb_name)143 144                     elif bline.startswith('### DELETE FROM'):145                        record_sql=record_sql+"insert into {}(sqltype,tran_num,dbname,tbname) VALUES (3,{},'{}','{}');".format(self.tbrow,tran_num,self.db_name,self.tb_name)146 147                     elif bline.find('Xid =') != -1:148 149                         l = bline.index('server')150                         end_time = bline[:l:].rstrip(' ').replace('#', '20')151                         self.end_time = end_time[0:4] + '-' + end_time[4:6] + '-' + end_time[6:]152                         tran_sql=record_sql+"insert into {}(begin_time,end_time) VALUES ('{}','{}')".format(self.tbtran,self.begin_time,self.end_time)153 154                         self.cur.execute(tran_sql)155                         self.mysqlconn.commit()156                         record_sql = ''157                         tran_num += 1158 159         except Exception:160             return 'funtion rowrecord error'161 162     def binlogdesc(self):163         sql=''164         t_num=0165         r_num=0166         logging.info('Analysed result printing...\n')167         #分析总的事务数跟行修改数量168         sql="select 'tbtran' name,count(*) nums from {}  union all select 'tbrow' name,count(*) nums from {};".format(self.tbtran,self.tbrow)169         self.cur.execute(sql)170         rows=self.cur.fetchall()171         for row in rows:172             if row['name']=='tbtran':173                 t_num = row['nums']174             else:175                 r_num = row['nums']176         print('This binlog file has {} transactions, {} rows are changed '.format(t_num,r_num))177 178         # 计算 最耗时 的单个事务179         # 分析每个事务的耗时情况,分为5个时间段来描述180         # 这里正常应该是 以毫秒来分析的,但是binlog中,只精确时间到second181         sql='''select 
182                       count(case when cost_sec between 0 and 1 then 1 end ) cos_1,183                       count(case when cost_sec between 1.1 and 5 then 1 end ) cos_5,184                       count(case when cost_sec between 5.1 and 10 then 1 end ) cos_10,185                       count(case when cost_sec between 10.1 and 30 then 1 end ) cos_30,186                       count(case when cost_sec >30.1 then 1 end ) cos_more,187                       max(cost_sec) cos_max188                 from 
189                 (190                         select 
191                             auto_id,timestampdiff(second,begin_time,end_time) cost_sec192                         from {}193                 ) a;'''.format(self.tbtran)194         self.cur.execute(sql)195         rows=self.cur.fetchall()196 197         for row in rows:198             print('The most cost time : {} '.format(row['cos_max']))199             print('The distribution map of each transaction costed time: ')200             print('Cost time between    0 and  1 second : {} , {}%'.format(row['cos_1'],int(row['cos_1']*100/t_num)))201             print('Cost time between  1.1 and  5 second : {} , {}%'.format(row['cos_5'], int(row['cos_5'] * 100 / t_num)))202             print('Cost time between  5.1 and 10 second : {} , {}%'.format(row['cos_10'], int(row['cos_10'] * 100 / t_num)))203             print('Cost time between 10.1 and 30 second : {} , {}%'.format(row['cos_30'], int(row['cos_30'] * 100 / t_num)))204             print('Cost time                     > 30.1 : {} , {}%\n'.format(row['cos_more'], int(row['cos_more'] * 100 / t_num)))205 206         # 计算 单个事务影响行数最多 的行数量207         # 分析每个事务 影响行数 情况,分为5个梯度来描述208         sql='''select 
209                     count(case when nums between 0 and 10 then 1 end ) row_1,210                     count(case when nums between 11 and 100 then 1 end ) row_2,211                     count(case when nums between 101 and 1000 then 1 end ) row_3,212                     count(case when nums between 1001 and 10000 then 1 end ) row_4,213                     count(case when nums >10001 then 1 end ) row_5,214                     max(nums) row_max215                from 
216                   (217                     select 
218                              count(*) nums219                     from {} group by tran_num220                    ) a;'''.format(self.tbrow)221         self.cur.execute(sql)222         rows=self.cur.fetchall()223 224         for row in rows:225             print('The most changed rows for each row: {} '.format(row['row_max']))226             print('The distribution map of each transaction changed rows : ')227             print('Changed rows between    1 and    10 second : {} , {}%'.format(row['row_1'],int(row['row_1']*100/t_num)))228             print('Changed rows between   11 and   100 second : {} , {}%'.format(row['row_2'], int(row['row_2'] * 100 / t_num)))229             print('Changed rows between  101 and  1000 second : {} , {}%'.format(row['row_3'], int(row['row_3'] * 100 / t_num)))230             print('Changed rows between 1001 and 10000 second : {} , {}%'.format(row['row_4'], int(row['row_4'] * 100 / t_num)))231             print('Changed rows                       > 10001 : {} , {}%\n'.format(row['row_5'], int(row['row_5'] * 100 / t_num)))232 233         # 分析 各个行数 DML的类型情况234         # 描述 delete,insert,update的分布情况235         sql='select sqltype ,count(*) nums from {} group by sqltype ;'.format(self.tbrow)236         self.cur.execute(sql)237         rows=self.cur.fetchall()238 239         print('The distribution map of the {} changed rows : '.format(r_num))240         for row in rows:241 242             if row['sqltype']==1:243                 print('INSERT rows :{} , {}% '.format(row['nums'],int(row['nums']*100/r_num)))244             if row['sqltype']==2:245                 print('UPDATE rows :{} , {}% '.format(row['nums'],int(row['nums']*100/r_num)))246             if row['sqltype']==3:247                 print('DELETE rows :{} , {}%\n '.format(row['nums'],int(row['nums']*100/r_num)))248 249         # 描述 影响行数 最多的表格250         # 可以分析是哪些表格频繁操作,这里显示前10个table name251         sql = '''select 
252                       dbname,tbname ,253                       count(*) ALL_rows,254                       count(*)*100/{} per,255                       count(case when sqltype=1 then 1 end) INSERT_rows,256                       count(case when sqltype=2 then 1 end) UPDATE_rows,257                       count(case when sqltype=3 then 1 end) DELETE_rows258                 from {} 
259                 group by dbname,tbname 
260                 order by ALL_rows desc 
261                 limit 10;'''.format(r_num,self.tbrow)262         self.cur.execute(sql)263         rows = self.cur.fetchall()264 265         print('The distribution map of the {} changed rows : '.format(r_num))266         print('tablename'.ljust(50),267               '|','changed_rows'.center(15),268               '|','percent'.center(10),269               '|','insert_rows'.center(18),270               '|','update_rows'.center(18),271               '|','delete_rows'.center(18)272               )273         print('-------------------------------------------------------------------------------------------------------------------------------------------------')274         for row in rows:275             print((row['dbname']+'.'+row['tbname']).ljust(50),276                   '|',str(row['ALL_rows']).rjust(15),277                   '|',(str(int(row['per']))+'%').rjust(10),278                   '|',str(row['INSERT_rows']).rjust(10)+' , '+(str(int(row['INSERT_rows']*100/row['ALL_rows']))+'%').ljust(5),279                   '|',str(row['UPDATE_rows']).rjust(10)+' , '+(str(int(row['UPDATE_rows']*100/row['ALL_rows']))+'%').ljust(5),280                   '|',str(row['DELETE_rows']).rjust(10)+' , '+(str(int(row['DELETE_rows']*100/row['ALL_rows']))+'%').ljust(5),281                   )282         print('\n')283 284         logging.info('Finished to analyse the binlog file !!!')285 286     def closeconn(self):287         self.cur.close()288         logging.info('release db connections\n')289 290 def main():291     p = queryanalyse()292     p.rowrecord()293     p.binlogdesc()294     p.closeconn()295 296 if name == "main":297     main()

以上がbinlog に基づいて mysql 行レコードの変更を分析するの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
MySQLのライセンスは、他のデータベースシステムと比較してどうですか?MySQLのライセンスは、他のデータベースシステムと比較してどうですか?Apr 25, 2025 am 12:26 AM

MySQLはGPLライセンスを使用します。 1)GPLライセンスにより、MySQLの無料使用、変更、分布が可能になりますが、変更された分布はGPLに準拠する必要があります。 2)商業ライセンスは、公的な変更を回避でき、機密性を必要とする商用アプリケーションに適しています。

MyisamよりもInnodbを選びますか?MyisamよりもInnodbを選びますか?Apr 25, 2025 am 12:22 AM

Myisamの代わりにInnoDBを選択する場合の状況には、次のものが含まれます。1)トランザクションサポート、2)高い並行性環境、3)高いデータの一貫性。逆に、Myisamを選択する際の状況には、1)主に操作を読む、2)トランザクションサポートは必要ありません。 INNODBは、eコマースプラットフォームなどの高いデータの一貫性とトランザクション処理を必要とするアプリケーションに適していますが、Myisamはブログシステムなどの読み取り集約型およびトランザクションのないアプリケーションに適しています。

MySQLの外国キーの目的を説明してください。MySQLの外国キーの目的を説明してください。Apr 25, 2025 am 12:17 AM

MySQLでは、外部キーの機能は、テーブル間の関係を確立し、データの一貫性と整合性を確保することです。外部キーは、参照整合性チェックとカスケード操作を通じてデータの有効性を維持します。パフォーマンスの最適化に注意し、それらを使用するときに一般的なエラーを避けてください。

MySQLのインデックスのさまざまなタイプは何ですか?MySQLのインデックスのさまざまなタイプは何ですか?Apr 25, 2025 am 12:12 AM

MySQLには、B-Treeインデックス、ハッシュインデックス、フルテキストインデックス、空間インデックスの4つのメインインデックスタイプがあります。 1.B-Treeインデックスは、範囲クエリ、ソート、グループ化に適しており、従業員テーブルの名前列の作成に適しています。 2。HASHインデックスは、同等のクエリに適しており、メモリストレージエンジンのHASH_TABLEテーブルのID列の作成に適しています。 3。フルテキストインデックスは、記事テーブルのコンテンツ列の作成に適したテキスト検索に使用されます。 4.空間インデックスは、地理空間クエリに使用され、場所テーブルのGEOM列での作成に適しています。

MySQLでインデックスをどのように作成しますか?MySQLでインデックスをどのように作成しますか?Apr 25, 2025 am 12:06 AM

tocreateanindexinmysql、usethecreateindexstatement.1)forasinglecolumn、 "createdexidx_lastnameonemployees(lastname);" 2)foracompositeindexを使用して、 "createindexidx_nameonemployees(lastname、firstname);" 3); "3)、" 3)を使用します

MySQLはSQLiteとどのように違いますか?MySQLはSQLiteとどのように違いますか?Apr 24, 2025 am 12:12 AM

MySQLとSQLiteの主な違いは、設計コンセプトと使用法のシナリオです。1。MySQLは、大規模なアプリケーションとエンタープライズレベルのソリューションに適しており、高性能と高い並行性をサポートしています。 2。SQLiteは、モバイルアプリケーションとデスクトップソフトウェアに適しており、軽量で埋め込みやすいです。

MySQLのインデックスとは何ですか?また、パフォーマンスをどのように改善しますか?MySQLのインデックスとは何ですか?また、パフォーマンスをどのように改善しますか?Apr 24, 2025 am 12:09 AM

MySQLのインデックスは、データの取得をスピードアップするために使用されるデータベーステーブル内の1つ以上の列の順序付けられた構造です。 1)インデックスは、スキャンされたデータの量を減らすことにより、クエリ速度を改善します。 2)B-Tree Indexは、バランスの取れたツリー構造を使用します。これは、範囲クエリとソートに適しています。 3)CreateIndexステートメントを使用して、createIndexidx_customer_idonorders(customer_id)などのインデックスを作成します。 4)Composite Indexesは、createIndexIDX_CUSTOMER_ORDERONORDERS(Customer_Id、Order_date)などのマルチコラムクエリを最適化できます。 5)説明を使用してクエリ計画を分析し、回避します

データの一貫性を確保するために、MySQLでトランザクションを使用する方法を説明します。データの一貫性を確保するために、MySQLでトランザクションを使用する方法を説明します。Apr 24, 2025 am 12:09 AM

MySQLでトランザクションを使用すると、データの一貫性が保証されます。 1)StartTransactionを介してトランザクションを開始し、SQL操作を実行して、コミットまたはロールバックで送信します。 2)SavePointを使用してSave Pointを設定して、部分的なロールバックを許可します。 3)パフォーマンスの最適化の提案には、トランザクション時間の短縮、大規模なクエリの回避、分離レベルの使用が合理的に含まれます。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

PhpStorm Mac バージョン

PhpStorm Mac バージョン

最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

AtomエディタMac版ダウンロード

AtomエディタMac版ダウンロード

最も人気のあるオープンソースエディター

WebStorm Mac版

WebStorm Mac版

便利なJavaScript開発ツール

SecLists

SecLists

SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

EditPlus 中国語クラック版

EditPlus 中国語クラック版

サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません