この記事では、主に非同期プロキシ クローラーとプロキシ プールを実装するための Python の関連知識を紹介します。非常に参考になります。
Python asyncio を使用して非同期プロキシ プールを実装してみましょう。 Web サイト上の無料プロキシは、プロキシの数が定期的に拡張され、プール内のプロキシの有効性がチェックされ、無効なプロキシが削除されます。同時に、サーバーは aiohttp を使用して実装され、他のプログラムは対応する URL にアクセスすることでプロキシ プールからプロキシを取得できます。
ソースコード
Github
環境
Python 3.5+
Redis
-
PhantomJS (オプション) )
スーパーバイザー (オプション)
なぜならコードでは、asyncio の async および await 構文が広範囲に使用されています。これらは Python 3.5 でのみ提供されているため、Python 3.6 以降を使用するのが最善です。依存関係
selenium
- Selenium パッケージは主に PhantomJS を操作するために使用されます。
コードについては以下で説明します。
- 1. クローラー部分
コアコード
async def start(self): for rule in self._rules: parser = asyncio.ensure_future(self._parse_page(rule)) # 根据规则解析页面来获取代理 logger.debug('{0} crawler started'.format(rule.rule_name)) if not rule.use_phantomjs: await page_download(ProxyCrawler._url_generator(rule), self._pages, self._stop_flag) # 爬取代理网站的页面 else: await page_download_phantomjs(ProxyCrawler._url_generator(rule), self._pages, rule.phantomjs_load_flag, self._stop_flag) # 使用PhantomJS爬取 await self._pages.join() parser.cancel() logger.debug('{0} crawler finished'.format(rule.rule_name))
上記のコアコードは、実際には、asyncio.Queueを使用して実装されたプロダクション/コンシューマモデル
です。以下は、このモデルの簡単な実装です。上記のコードを実行すると、次のような出力が得られます。
import asyncio from random import random async def produce(queue, n): for x in range(1, n + 1): print('produce ', x) await asyncio.sleep(random()) await queue.put(x) # 向queue中放入item async def consume(queue): while 1: item = await queue.get() # 等待从queue中获取item print('consume ', item) await asyncio.sleep(random()) queue.task_done() # 通知queue当前item处理完毕 async def run(n): queue = asyncio.Queue() consumer = asyncio.ensure_future(consume(queue)) await produce(queue, n) # 等待生产者结束 await queue.join() # 阻塞直到queue不为空 consumer.cancel() # 取消消费者任务,否则它会一直阻塞在get方法处 def aio_queue_run(n): loop = asyncio.get_event_loop() try: loop.run_until_complete(run(n)) # 持续运行event loop直到任务run(n)结束 finally: loop.close() if name == 'main': aio_queue_run(5)
produce 1 produce 2 consume 1 produce 3 produce 4 consume 2 produce 5 consume 3 consume 4 consume 5aiohttp によって実装された Web クローリング
最も簡単な方法は、xpath を使用してプロキシを解析することです。Chrome ブラウザを使用している場合は、右クリックして選択したページ要素の xpath を直接取得できます。
Chrome をインストールします。 拡張機能「XPath Helper」を実行して、ページ上で直接 xpath をデバッグすることができます。これは非常に便利です:
BeautifulSoup は xpath をサポートせず、lxml を使用してページを解析します。 コードは次のとおりです。
async def page_download(urls, pages, flag): url_generator = urls async with aiohttp.ClientSession() as session: for url in url_generator: if flag.is_set(): break await asyncio.sleep(uniform(delay - 0.5, delay + 1)) logger.debug('crawling proxy web page {0}'.format(url)) try: async with session.get(url, headers=headers, timeout=10) as response: page = await response.text() parsed = html.fromstring(decode_html(page)) # 使用bs4来辅助lxml解码网页:http://lxml.de/elementsoup.html#Using only the encoding detection await pages.put(parsed) url_generator.send(parsed) # 根据当前页面来获取下一页的地址 except StopIteration: break except asyncio.TimeoutError: logger.error('crawling {0} timeout'.format(url)) continue # TODO: use a proxy except Exception as e: logger.error(e)クローラールール
Web サイトのクローリング、プロキシ解析、フィルタリングおよびその他の操作のルールは、各プロキシ Web サイトのルール クラスによって定義され、ルール クラスの管理には基本クラスが使用されます。基本クラスは次のように定義されます:
async def _parse_proxy(self, rule, page): ips = page.xpath(rule.ip_xpath) # 根据xpath解析得到list类型的ip地址集合 ports = page.xpath(rule.port_xpath) # 根据xpath解析得到list类型的ip地址集合 if not ips or not ports: logger.warning('{2} crawler could not get ip(len={0}) or port(len={1}), please check the xpaths or network'. format(len(ips), len(ports), rule.rule_name)) return proxies = map(lambda x, y: '{0}:{1}'.format(x.text.strip(), y.text.strip()), ips, ports) if rule.filters: # 根据过滤字段来过滤代理,如“高匿”、“透明”等 filters = [] for i, ft in enumerate(rule.filters_xpath): field = page.xpath(ft) if not field: logger.warning('{1} crawler could not get {0} field, please check the filter xpath'. format(rule.filters[i], rule.rule_name)) continue filters.append(map(lambda x: x.text.strip(), field)) filters = zip(*filters) selector = map(lambda x: x == rule.filters, filters) proxies = compress(proxies, selector) for proxy in proxies: await self._proxies.put(proxy) # 解析后的代理放入asyncio.Queue中各パラメーターの意味は次のとおりです:
ip_xpath
(必須) IP をクロールするための xpath ルール。 port_xpath
(必須)
page_count
クロールされたページの数。
urls_format
urls_format によるページ アドレス 文字列 の形式. format(start_url, n) は、一般的なページ アドレス形式であるページ n のアドレスを生成します。
next_page_xpath
、next_page_host
xpath ルールを使用して次のページの URL (一般的には相対パス) を取得し、それをホストと組み合わせて、次のページのアドレス: next_page_host + url。
use_phantomjs
、 phantomjs_load_flag
use_phantomjs は、Web サイトのクロールに PhantomJS を使用するかどうかを識別するために使用されます。使用する場合は、phantomjs_load_flag (Web ページ上の要素) を定義する必要があります。 , str type ) は、PhantomJS ページがロードされたことを示す記号です。 filters
フィルター フィールド コレクション、反復可能な型。プロキシをフィルタリングするために使用されます。
各フィルター フィールドの xpath ルールをクロールし、フィルター フィールドに順番に対応させます。
メタクラス CrawlerRuleMeta は、ルール クラスの定義を管理するために使用されます。たとえば、use_phantomjs=True が定義されている場合、phantomjs_load_flag が定義されている必要があります。定義されていない場合は、例外がスローされます
。これについてはここでは説明しません。目前已经实现的规则有西刺代理、快代理、360代理、66代理和 秘密代理。新增规则类也很简单,通过继承CrawlerRuleBase来定义新的规则类YourRuleClass,放在proxypool/rules目录下,并在该目录下的init.py中添加from . import YourRuleClass(这样通过CrawlerRuleBase.subclasses()就可以获取全部的规则类了),重启正在运行的proxy pool即可应用新的规则。
2. 检验部分
免费的代理虽然多,但是可用的却不多,所以爬取到代理后需要对其进行检验,有效的代理才能放入代理池中,而代理也是有时效性的,还要定期对池中的代理进行检验,及时移除失效的代理。
这部分就很简单了,使用aiohttp通过代理来访问某个网站,若超时,则说明代理无效。
async def validate(self, proxies): logger.debug('validator started') while 1: proxy = await proxies.get() async with aiohttp.ClientSession() as session: try: real_proxy = 'http://' + proxy async with session.get(self.validate_url, proxy=real_proxy, timeout=validate_timeout) as resp: self._conn.put(proxy) except Exception as e: logger.error(e) proxies.task_done()
3. server部分
使用aiohttp实现了一个web server,启动后,访问http://host:port即可显示主页:
访问host:port/get来从代理池获取1个代理,如:'127.0.0.1:1080';
访问host:port/get/n来从代理池获取n个代理,如:"['127.0.0.1:1080', '127.0.0.1:443', '127.0.0.1:80']";
访问host:port/count来获取代理池的容量,如:'42'。
因为主页是一个静态的html页面,为避免每来一个访问主页的请求都要打开、读取以及关闭该html文件的开销,将其缓存到了redis中,通过html文件的修改时间来判断其是否被修改过,如果修改时间与redis缓存的修改时间不同,则认为html文件被修改了,则重新读取文件,并更新缓存,否则从redis中获取主页的内容。
返回代理是通过aiohttp.web.Response(text=ip.decode('utf-8'))
实现的,text要求str类型,而从redis中获取到的是bytes类型,需要进行转换。返回的多个代理,使用eval即可转换为list类型。
返回主页则不同,是通过aiohttp.web.Response(body=main_page_cache, content_type='text/html')
,这里body要求的是bytes类型,直接将从redis获取的缓存返回即可,conten_type='text/html'
必不可少,否则无法通过浏览器加载主页,而是会将主页下载下来——在运行官方文档中的示例代码的时候也要注意这点,那些示例代码基本上都没有设置content_type。
这部分不复杂,注意上面提到的几点,而关于主页使用的静态资源文件的路径,可以参考之前的博客《aiohttp之添加静态资源路径》。
4. 运行
将整个代理池的功能分成了3个独立的部分:
proxypool
定期检查代理池容量,若低于下限则启动代理爬虫并对代理检验,通过检验的爬虫放入代理池,达到规定的数量则停止爬虫。
proxyvalidator
用于定期检验代理池中的代理,移除失效代理。
proxyserver
启动server。
这3个独立的任务通过3个进程来运行,在Linux下可以使用supervisod来=管理这些进程,下面是supervisord的配置文件示例:
; supervisord.conf [unix_http_server] file=/tmp/supervisor.sock [inet_http_server] port=127.0.0.1:9001 [supervisord] logfile=/tmp/supervisord.log logfile_maxbytes=5MB logfile_backups=10 loglevel=debug pidfile=/tmp/supervisord.pid nodaemon=false minfds=1024 minprocs=200 [rpcinterface:supervisor] supervisor.rpcinterface_factory = supervisor.rpcinterface:make_main_rpcinterface [supervisorctl] serverurl=unix:///tmp/supervisor.sock [program:proxyPool] command=python /path/to/ProxyPool/run_proxypool.py redirect_stderr=true stdout_logfile=NONE [program:proxyValidator] command=python /path/to/ProxyPool/run_proxyvalidator.py redirect_stderr=true stdout_logfile=NONE [program:proxyServer] command=python /path/to/ProxyPool/run_proxyserver.py autostart=false redirect_stderr=true stdout_logfile=NONE
因为项目自身已经配置了日志,所以这里就不需要再用supervisord捕获stdout和stderr了。通过supervisord -c supervisord.conf启动supervisord,proxyPool和proxyServer则会随之自动启动,proxyServer需要手动启动,访问http://127.0.0.1:9001即可通过网页来管理这3个进程了:
supervisod的官方文档说目前(版本3.3.1)不支持python3,但是我在使用过程中没有发现什么问题,可能也是由于我并没有使用supervisord的复杂功能,只是把它当作了一个简单的进程状态监控和启停工具了。
【相关推荐】
1. Python免费视频教程
2. Python meets データ収集ビデオチュートリアル
以上が非同期プロキシとプロキシプールのPythonコードの詳細説明の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

Pythonは、データサイエンス、Web開発、自動化タスクに適していますが、Cはシステムプログラミング、ゲーム開発、組み込みシステムに適しています。 Pythonは、そのシンプルさと強力なエコシステムで知られていますが、Cは高性能および基礎となる制御機能で知られています。

2時間以内にPythonの基本的なプログラミングの概念とスキルを学ぶことができます。 1.変数とデータ型、2。マスターコントロールフロー(条件付きステートメントとループ)、3。機能の定義と使用を理解する4。

Pythonは、Web開発、データサイエンス、機械学習、自動化、スクリプトの分野で広く使用されています。 1)Web開発では、DjangoおよびFlask Frameworksが開発プロセスを簡素化します。 2)データサイエンスと機械学習の分野では、Numpy、Pandas、Scikit-Learn、Tensorflowライブラリが強力なサポートを提供します。 3)自動化とスクリプトの観点から、Pythonは自動テストやシステム管理などのタスクに適しています。

2時間以内にPythonの基本を学ぶことができます。 1。変数とデータ型を学習します。2。ステートメントやループの場合などのマスター制御構造、3。関数の定義と使用を理解します。これらは、簡単なPythonプログラムの作成を開始するのに役立ちます。

10時間以内にコンピューター初心者プログラミングの基本を教える方法は?コンピューター初心者にプログラミングの知識を教えるのに10時間しかない場合、何を教えることを選びますか...


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

MantisBT
Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

SublimeText3 英語版
推奨: Win バージョン、コードプロンプトをサポート!

ZendStudio 13.5.1 Mac
強力な PHP 統合開発環境
