ホームページ >データベース >mysql チュートリアル >MySQL パフォーマンスの最適化 -- 使用方法の概要を説明します

MySQL パフォーマンスの最適化 -- 使用方法の概要を説明します

零下一度
零下一度オリジナル
2017-05-05 16:31:241234ブラウズ

はじめに

MySQL は、SELECT ステートメントを分析し、開発者が最適化できるように SELECT 実行の詳細情報を出力できる EXPLAIN コマンドを提供します。 EXPLAIN コマンドの使用は非常に簡単です。例: SELECT 语句进行分析, 并输出 SELECT 执行的详细信息, 以供开发人员针对性优化.
EXPLAIN 命令用法十分简单, 在 SELECT 语句前加上 Explain 就可以了, 例如:

EXPLAIN SELECT * from user_info WHERE  id < 300;

准备

为了接下来方便演示 EXPLAIN 的使用, 首先我们需要建立两个测试用的表, 并添加相应的数据:

CREATE TABLE `user_info` (
  `id`   BIGINT(20)  NOT NULL AUTO_INCREMENT,
  `name` VARCHAR(50) NOT NULL DEFAULT &#39;&#39;,
  `age`  INT(11)              DEFAULT NULL,
  PRIMARY KEY (`id`),
  KEY `name_index` (`name`)
)
  ENGINE = InnoDB
  DEFAULT CHARSET = utf8

INSERT INTO user_info (name, age) VALUES (&#39;xys&#39;, 20);
INSERT INTO user_info (name, age) VALUES (&#39;a&#39;, 21);
INSERT INTO user_info (name, age) VALUES (&#39;b&#39;, 23);
INSERT INTO user_info (name, age) VALUES (&#39;c&#39;, 50);
INSERT INTO user_info (name, age) VALUES (&#39;d&#39;, 15);
INSERT INTO user_info (name, age) VALUES (&#39;e&#39;, 20);
INSERT INTO user_info (name, age) VALUES (&#39;f&#39;, 21);
INSERT INTO user_info (name, age) VALUES (&#39;g&#39;, 23);
INSERT INTO user_info (name, age) VALUES (&#39;h&#39;, 50);
INSERT INTO user_info (name, age) VALUES (&#39;i&#39;, 15);
CREATE TABLE `order_info` (
  `id`           BIGINT(20)  NOT NULL AUTO_INCREMENT,
  `user_id`      BIGINT(20)           DEFAULT NULL,
  `product_name` VARCHAR(50) NOT NULL DEFAULT &#39;&#39;,
  `productor`    VARCHAR(30)          DEFAULT NULL,
  PRIMARY KEY (`id`),
  KEY `user_product_detail_index` (`user_id`, `product_name`, `productor`)
)
  ENGINE = InnoDB
  DEFAULT CHARSET = utf8

INSERT INTO order_info (user_id, product_name, productor) VALUES (1, &#39;p1&#39;, &#39;WHH&#39;);
INSERT INTO order_info (user_id, product_name, productor) VALUES (1, &#39;p2&#39;, &#39;WL&#39;);
INSERT INTO order_info (user_id, product_name, productor) VALUES (1, &#39;p1&#39;, &#39;DX&#39;);
INSERT INTO order_info (user_id, product_name, productor) VALUES (2, &#39;p1&#39;, &#39;WHH&#39;);
INSERT INTO order_info (user_id, product_name, productor) VALUES (2, &#39;p5&#39;, &#39;WL&#39;);
INSERT INTO order_info (user_id, product_name, productor) VALUES (3, &#39;p3&#39;, &#39;MA&#39;);
INSERT INTO order_info (user_id, product_name, productor) VALUES (4, &#39;p1&#39;, &#39;WHH&#39;);
INSERT INTO order_info (user_id, product_name, productor) VALUES (6, &#39;p1&#39;, &#39;WHH&#39;);
INSERT INTO order_info (user_id, product_name, productor) VALUES (9, &#39;p8&#39;, &#39;TE&#39;);

EXPLAIN 输出格式

EXPLAIN 命令的输出内容大致如下:

mysql> explain select * from user_info where id = 2\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: user_info
   partitions: NULL
         type: const
possible_keys: PRIMARY
          key: PRIMARY
      key_len: 8
          ref: const
         rows: 1
     filtered: 100.00
        Extra: NULL
1 row in set, 1 warning (0.00 sec)

各列的含义如下:

  • id: SELECT 查询的标识符. 每个 SELECT 都会自动分配一个唯一的标识符.

  • select_type: SELECT 查询的类型.

  • table: 查询的是哪个表

  • partitions: 匹配的分区

  • type: join 类型

  • possible_keys: 此次查询中可能选用的索引

  • key: 此次查询中确切使用到的索引.

  • ref: 哪个字段或常数与 key 一起被使用

  • rows: 显示此查询一共扫描了多少行. 这个是一个估计值.

  • filtered: 表示此查询条件所过滤的数据的百分比

  • extra: 额外的信息

接下来我们来重点看一下比较重要的几个字段.

select_type

select_type 表示了查询的类型, 它的常用取值有:

  • SIMPLE, 表示此查询不包含 UNION 查询或子查询

  • PRIMARY, 表示此查询是最外层的查询

  • UNION, 表示此查询是 UNION 的第二或随后的查询

  • DEPENDENT UNION, UNION 中的第二个或后面的查询语句, 取决于外面的查询

  • UNION RESULT, UNION 的结果

  • SUBQUERY, 子查询中的第一个 SELECT

  • DEPENDENT SUBQUERY: 子查询中的第一个 SELECT, 取决于外面的查询. 即子查询依赖于外层查询的结果.

最常见的查询类别应该是 SIMPLE 了, 比如当我们的查询没有子查询, 也没有 UNION 查询时, 那么通常就是 SIMPLE 类型, 例如:

mysql> explain select * from user_info where id = 2\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: user_info
   partitions: NULL
         type: const
possible_keys: PRIMARY
          key: PRIMARY
      key_len: 8
          ref: const
         rows: 1
     filtered: 100.00
        Extra: NULL
1 row in set, 1 warning (0.00 sec)

如果我们使用了 UNION 查询, 那么 EXPLAIN 输出 的结果类似如下:

mysql> EXPLAIN (SELECT * FROM user_info  WHERE id IN (1, 2, 3))
    -> UNION
    -> (SELECT * FROM user_info WHERE id IN (3, 4, 5));
+----+--------------+------------+------------+-------+---------------+---------+---------+------+------+----------+-----------------+
| id | select_type  | table      | partitions | type  | possible_keys | key     | key_len | ref  | rows | filtered | Extra           |
+----+--------------+------------+------------+-------+---------------+---------+---------+------+------+----------+-----------------+
|  1 | PRIMARY      | user_info  | NULL       | range | PRIMARY       | PRIMARY | 8       | NULL |    3 |   100.00 | Using where     |
|  2 | UNION        | user_info  | NULL       | range | PRIMARY       | PRIMARY | 8       | NULL |    3 |   100.00 | Using where     |
| NULL | UNION RESULT | <union1,2> | NULL       | ALL   | NULL          | NULL    | NULL    | NULL | NULL |     NULL | Using temporary |
+----+--------------+------------+------------+-------+---------------+---------+---------+------+------+----------+-----------------+
3 rows in set, 1 warning (0.00 sec)

table

表示查询涉及的表或衍生表

type

type 字段比较重要, 它提供了判断查询是否高效的重要依据依据. 通过 type 字段, 我们判断此次查询是 全表扫描 还是 索引扫描 等.

type 常用类型

type 常用的取值有:

  • system: 表中只有一条数据. 这个类型是特殊的 const 类型.

  • const: 针对主键或唯一索引的等值查询扫描, 最多只返回一行数据. const 查询速度非常快, 因为它仅仅读取一次即可.
    例如下面的这个查询, 它使用了主键索引, 因此 type 就是 const 类型的.

    mysql> explain select * from user_info where id = 2\G
    *************************** 1. row ***************************
            id: 1
    select_type: SIMPLE
         table: user_info
    partitions: NULL
          type: const
    possible_keys: PRIMARY
           key: PRIMARY
       key_len: 8
           ref: const
          rows: 1
      filtered: 100.00
         Extra: NULL
    1 row in set, 1 warning (0.00 sec)
  • eq_ref: 此类型通常出现在多表的 join 查询,  表示对于前表的每一个结果, 都只能匹配到后表的一行结果. 并且查询的比较操作通常是 =, 查询效率较高. 例如:

    mysql> EXPLAIN SELECT * FROM user_info, order_info WHERE user_info.id = order_info.user_id\G
    *************************** 1. row ***************************
            id: 1
    select_type: SIMPLE
         table: order_info
    partitions: NULL
          type: index
    possible_keys: user_product_detail_index
           key: user_product_detail_index
       key_len: 314
           ref: NULL
          rows: 9
      filtered: 100.00
         Extra: Using where; Using index
    *************************** 2. row ***************************
            id: 1
    select_type: SIMPLE
         table: user_info
    partitions: NULL
          type: eq_ref
    possible_keys: PRIMARY
           key: PRIMARY
       key_len: 8
           ref: test.order_info.user_id
          rows: 1
      filtered: 100.00
         Extra: NULL
    2 rows in set, 1 warning (0.00 sec)
  • ref: 此类型通常出现在多表的 join 查询, 针对于非唯一或非主键索引, 或者是使用了 最左前缀 规则索引的查询.
    例如下面这个例子中, 就使用到了 ref 类型的查询:

    mysql> EXPLAIN SELECT * FROM user_info, order_info WHERE user_info.id = order_info.user_id AND order_info.user_id = 5\G
    *************************** 1. row ***************************
            id: 1
    select_type: SIMPLE
         table: user_info
    partitions: NULL
          type: const
    possible_keys: PRIMARY
           key: PRIMARY
       key_len: 8
           ref: const
          rows: 1
      filtered: 100.00
         Extra: NULL
    *************************** 2. row ***************************
            id: 1
    select_type: SIMPLE
         table: order_info
    partitions: NULL
          type: ref
    possible_keys: user_product_detail_index
           key: user_product_detail_index
       key_len: 9
           ref: const
          rows: 1
      filtered: 100.00
         Extra: Using index
    2 rows in set, 1 warning (0.01 sec)
  • range: 表示使用索引范围查询, 通过索引字段范围获取表中部分数据记录. 这个类型通常出现在 =, a8093152e673feb7aba1828c43532094, >, >=, 8c46de2fb1ad26ec78b11dc98bf4bf30, BETWEEN, IN() 操作中.
    typerange 时, 那么 EXPLAIN 输出的 ref 字段为 NULL, 并且 key_len 字段是此次查询中使用到的索引的最长的那个.
    例如下面的例子就是一个范围查询:

    mysql> EXPLAIN SELECT *
     ->         FROM user_info
     ->         WHERE id BETWEEN 2 AND 8 \G
    *************************** 1. row ***************************
            id: 1
    select_type: SIMPLE
         table: user_info
    partitions: NULL
          type: range
    possible_keys: PRIMARY
           key: PRIMARY
       key_len: 8
           ref: NULL
          rows: 7
      filtered: 100.00
         Extra: Using where
    1 row in set, 1 warning (0.00 sec)
  • index: 表示全索引扫描(full index scan), 和 ALL 类型类似, 只不过 ALL 类型是全表扫描, 而 index 类型则仅仅扫描所有的索引, 而不扫描数据.
    index 类型通常出现在: 所要查询的数据直接在索引树中就可以获取到, 而不需要扫描数据. 当是这种情况时, Extra 字段 会显示 Using index.

例如:

mysql> EXPLAIN SELECT name FROM  user_info \G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: user_info
   partitions: NULL
         type: index
possible_keys: NULL
          key: name_index
      key_len: 152
          ref: NULL
         rows: 10
     filtered: 100.00
        Extra: Using index
1 row in set, 1 warning (0.00 sec)

上面的例子中, 我们查询的 name 字段恰好是一个索引, 因此我们直接从索引中获取数据就可以满足查询的需求了, 而不需要查询表中的数据. 因此这样的情况下, type 的值是 index, 并且 Extra 的值是 Using index

mysql> EXPLAIN SELECT age FROM  user_info WHERE age = 20 \G
*************************** 1. row ***************************
        id: 1
select_type: SIMPLE
     table: user_info
partitions: NULL
      type: ALL
possible_keys: NULL
       key: NULL
   key_len: NULL
       ref: NULL
      rows: 10
  filtered: 10.00
     Extra: Using where
1 row in set, 1 warning (0.00 sec)

Prepare🎜🎜 のように、SELECT ステートメントの前に Explain を追加するだけです。対応するデータ:🎜
mysql> EXPLAIN SELECT * FROM order_info WHERE user_id < 3 AND product_name = &#39;p1&#39; AND productor = &#39;WHH&#39; \G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: order_info
   partitions: NULL
         type: range
possible_keys: user_product_detail_index
          key: user_product_detail_index
      key_len: 9
          ref: NULL
         rows: 5
     filtered: 11.11
        Extra: Using where; Using index
1 row in set, 1 warning (0.00 sec)
KEY `user_product_detail_index` (`user_id`, `product_name`, `productor`)
🎜EXPLAIN 出力形式🎜🎜EXPLAIN コマンドの出力はおおよそ次のとおりです:🎜
mysql> EXPLAIN SELECT * FROM order_info WHERE user_id = 1 AND product_name = &#39;p1&#39; \G;
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: order_info
   partitions: NULL
         type: ref
possible_keys: user_product_detail_index
          key: user_product_detail_index
      key_len: 161
          ref: const,const
         rows: 2
     filtered: 100.00
        Extra: Using index
1 row in set, 1 warning (0.00 sec)
🎜各列の意味は次のとおりです:🎜
  • 🎜id: SELECT クエリの識別子。各 SELECT には一意の識別子が自動的に割り当てられます。🎜
  • 🎜select_type: SELECT クエリのタイプ。🎜
  • 🎜table: どのテーブルかクエリされています🎜
  • 🎜partitions: 一致するパーティション🎜
  • 🎜type: 結合タイプ🎜
  • 🎜possible_keys: このクエリで選択できるインデックス🎜
  • 🎜key: このクエリで使用される正確なインデックス。🎜
  • 🎜ref: key で使用されるフィールドまたは定数🎜
  • 🎜rows: このクエリを表示する合計でスキャンされた行数。これは推定値です。 🎜
  • 🎜filtered: このクエリ条件によってフィルターされたデータの割合を示します。 🎜
  • 🎜extra: 追加情報 🎜
🎜次に、より重要なフィールドをいくつか見てみましょう。🎜

select_type

🎜select_type はクエリのタイプとその共通の値を表します。 : 🎜
  • 🎜SIMPLE、このクエリに UNION クエリまたはサブクエリが含まれていないことを示します🎜
  • 🎜PRIMARY、このクエリが最外層であることを示しますQuery🎜
  • 🎜UNION、このクエリが UNION の 2 番目以降のクエリであることを示します🎜
  • 🎜DEPENDENT UNION、外部クエリに応じて UNION の 2 番目以降のクエリ ステートメント🎜
  • 🎜UNION RESULT、UNION の結果🎜
  • 🎜SUBQUERY、サブクエリ内の最初の SELECT 🎜
  • 🎜DEPENDENT SUBQUERY: sub クエリ内の最初の SELECTつまり、サブクエリは外部クエリの結果に依存します。🎜
🎜 最も一般的なクエリ カテゴリは SIMPLE である必要があります。クエリにはサブクエリも UNION クエリもありません。通常は SIMPLE タイプです。例: 🎜
mysql> EXPLAIN SELECT * FROM order_info ORDER BY product_name \G
*************************** 1. row ***************************
        id: 1
select_type: SIMPLE
     table: order_info
partitions: NULL
      type: index
possible_keys: NULL
       key: user_product_detail_index
   key_len: 253
       ref: NULL
      rows: 9
  filtered: 100.00
     Extra: Using index; Using filesort
1 row in set, 1 warning (0.00 sec)
🎜 UNION クエリを使用する場合、EXPLAIN によって出力される結果は次のようになります: 🎜
KEY `user_product_detail_index` (`user_id`, `product_name`, `productor`)

table

🎜クエリに含まれるテーブルまたは派生テーブルを示します🎜

type

🎜type フィールドの方が重要であり、クエリは効率的です。 ベースに基づいて、type フィールドを通じて、クエリが full table scanindex scan であるかどうかを決定します。 🎜

type 一般的なタイプ h4>🎜type 一般的に使用される値は次のとおりです: 🎜
  • 🎜system: テーブルにはデータが 1 つだけあります。 type は特別な const 型です。🎜
  • 🎜const: 主キーまたは一意のインデックスに対する同等のクエリ スキャン。最大でも 1 行のデータのみを返します。const クエリは非常に高速です。読み取りは 1 回だけであるためです。
    たとえば、次のクエリでは主キー インデックスが使用されているため、typeconst タイプになります。 🎜
    mysql> EXPLAIN SELECT * FROM order_info ORDER BY user_id, product_name \G
    *************************** 1. row ***************************
               id: 1
      select_type: SIMPLE
            table: order_info
       partitions: NULL
             type: index
    possible_keys: NULL
              key: user_product_detail_index
          key_len: 253
              ref: NULL
             rows: 9
         filtered: 100.00
            Extra: Using index
    1 row in set, 1 warning (0.00 sec)
  • 🎜eq_ref: このタイプは通常、複数のテーブルに表示されます。結合クエリは、前のテーブルの各結果が後のテーブルの結果の 1 行のみと一致することを意味します。また、クエリの比較演算は通常 = は、クエリをより効率的にします。例: 🎜rrreee<li>🎜ref: このタイプは通常、非一意または非主キー インデックス、またはクエリの複数テーブル結合クエリに使用されます。 <code>leftmost prefix ルール インデックスを使用します。
    たとえば、次の例では、ref タイプのクエリが使用されます: 🎜rrreee
  • 🎜range: インデックス範囲クエリを使用して、インデックス フィールド範囲 Record を通じてテーブル内のデータの一部を取得することを意味します。このタイプは通常、=、a8093152e673feb7aba1828c43532094、>、>=、b9339b5e8093c25cf3835371bdce4afd、BETWEEN、IN() の操作。
    typerange の場合、ref EXPLAIN によるフィールド出力は NULL で、このクエリの key_len フィールドは NULL です。使用される最長のインデックスです。
    たとえば、次の例は範囲クエリです:🎜rrreee
  • 🎜index: ALL タイプと同様に、フル インデックス スキャン (フル インデックス スキャン) を表します。ALL タイプはテーブル全体をスキャンするのに対し、インデックス タイプはデータをスキャンせずにすべてのインデックスのみをスキャンします。
    インデックス タイプは通常、次の場合に表示されます。データをスキャンする必要がなく、クエリ対象のデータがインデックス ツリーで直接取得できる場合、[追加] フィールドに Using Index.🎜
🎜例: 🎜rrreee🎜 上の例では、名前フィールドをクエリします。これはたまたまインデックスであるため、データを直接取得することでクエリのニーズを満たすことができます。したがって、この場合、type の値は index であり、Extra の値は Using Index です。🎜
  • ALL: 表示全表扫描, 这个类型的查询是性能最差的查询之一. 通常来说, 我们的查询不应该出现 ALL 类型的查询, 因为这样的查询在数据量大的情况下, 对数据库的性能是巨大的灾难. 如一个查询是 ALL 类型查询, 那么一般来说可以对相应的字段添加索引来避免.
    下面是一个全表扫描的例子, 可以看到, 在全表扫描时, possible_keys 和 key 字段都是 NULL, 表示没有使用到索引, 并且 rows 十分巨大, 因此整个查询效率是十分低下的.

    mysql> EXPLAIN SELECT age FROM  user_info WHERE age = 20 \G
    *************************** 1. row ***************************
            id: 1
    select_type: SIMPLE
         table: user_info
    partitions: NULL
          type: ALL
    possible_keys: NULL
           key: NULL
       key_len: NULL
           ref: NULL
          rows: 10
      filtered: 10.00
         Extra: Using where
    1 row in set, 1 warning (0.00 sec)

    type 类型的性能比较

    通常来说, 不同的 type 类型的性能关系如下:
    ALL < index < range ~ index_merge < ref < eq_ref < const < system
    ALL 类型因为是全表扫描, 因此在相同的查询条件下, 它是速度最慢的.
    index 类型的查询虽然不是全表扫描, 但是它扫描了所有的索引, 因此比 ALL 类型的稍快.
    后面的几种类型都是利用了索引来查询数据, 因此可以过滤部分或大部分数据, 因此查询效率就比较高了.

possible_keys

possible_keys 表示 MySQL 在查询时, 能够使用到的索引. 注意, 即使有些索引在 possible_keys 中出现, 但是并不表示此索引会真正地被 MySQL 使用到. MySQL 在查询时具体使用了哪些索引, 由 key 字段决定.

key

此字段是 MySQL 在当前查询时所真正使用到的索引.

key_len

表示查询优化器使用了索引的字节数. 这个字段可以评估组合索引是否完全被使用, 或只有最左部分字段被使用到.
key_len 的计算规则如下:

  • 字符串

    • char(n): n 字节长度

    • varchar(n): 如果是 utf8 编码, 则是 3 n + 2字节; 如果是 utf8mb4 编码, 则是 4 n + 2 字节.

  • 数值类型:

    • TINYINT: 1字节

    • SMALLINT: 2字节

    • MEDIUMINT: 3字节

    • INT: 4字节

    • BIGINT: 8字节

  • 时间类型

    • DATE: 3字节

    • TIMESTAMP: 4字节

    • DATETIME: 8字节

  • 字段属性: NULL 属性 占用一个字节. 如果一个字段是 NOT NULL 的, 则没有此属性.

我们来举两个简单的栗子:

mysql> EXPLAIN SELECT * FROM order_info WHERE user_id < 3 AND product_name = &#39;p1&#39; AND productor = &#39;WHH&#39; \G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: order_info
   partitions: NULL
         type: range
possible_keys: user_product_detail_index
          key: user_product_detail_index
      key_len: 9
          ref: NULL
         rows: 5
     filtered: 11.11
        Extra: Using where; Using index
1 row in set, 1 warning (0.00 sec)

上面的例子是从表 order_info 中查询指定的内容, 而我们从此表的建表语句中可以知道, 表 order_info 有一个联合索引:

KEY `user_product_detail_index` (`user_id`, `product_name`, `productor`)

不过此查询语句 WHERE user_id < 3 AND product_name = 'p1' AND productor = 'WHH' 中, 因为先进行 user_id 的范围查询, 而根据 最左前缀匹配 原则, 当遇到范围查询时, 就停止索引的匹配, 因此实际上我们使用到的索引的字段只有 user_id, 因此在 EXPLAIN    中, 显示的 key_len 为 9. 因为 user_id 字段是 BIGINT, 占用 8 字节, 而 NULL 属性占用一个字节, 因此总共是 9 个字节. 若我们将user_id 字段改为 BIGINT(20)  NOT NULL DEFAULT '0', 则 key_length 应该是8.

上面因为 最左前缀匹配 原则, 我们的查询仅仅使用到了联合索引的 user_id 字段, 因此效率不算高.

接下来我们来看一下下一个例子:

mysql> EXPLAIN SELECT * FROM order_info WHERE user_id = 1 AND product_name = &#39;p1&#39; \G;
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: order_info
   partitions: NULL
         type: ref
possible_keys: user_product_detail_index
          key: user_product_detail_index
      key_len: 161
          ref: const,const
         rows: 2
     filtered: 100.00
        Extra: Using index
1 row in set, 1 warning (0.00 sec)

这次的查询中, 我们没有使用到范围查询, key_len 的值为 161. 为什么呢? 因为我们的查询条件 WHERE user_id = 1 AND product_name = 'p1' 中, 仅仅使用到了联合索引中的前两个字段, 因此 keyLen(user_id) + keyLen(product_name) = 9 + 50 * 3 + 2 = 161

rows

rows 也是一个重要的字段. MySQL 查询优化器根据统计信息, 估算 SQL 要查找到结果集需要扫描读取的数据行数.
这个值非常直观显示 SQL 的效率好坏, 原则上 rows 越少越好.

Extra

EXplain 中的很多额外的信息会在 Extra 字段显示, 常见的有以下几种内容:

  • Using filesort
    当 Extra 中有 Using filesort 时, 表示 MySQL 需额外的排序操作, 不能通过索引顺序达到排序效果. 一般有 Using filesort, 都建议优化去掉, 因为这样的查询 CPU 资源消耗大.
    例如下面的例子:

    mysql> EXPLAIN SELECT * FROM order_info ORDER BY product_name \G
    *************************** 1. row ***************************
            id: 1
    select_type: SIMPLE
         table: order_info
    partitions: NULL
          type: index
    possible_keys: NULL
           key: user_product_detail_index
       key_len: 253
           ref: NULL
          rows: 9
      filtered: 100.00
         Extra: Using index; Using filesort
    1 row in set, 1 warning (0.00 sec)

我们的索引是

KEY `user_product_detail_index` (`user_id`, `product_name`, `productor`)

但是上面的查询中根据 product_name 来排序, 因此不能使用索引进行优化, 进而会产生 Using filesort.
如果我们将排序依据改为 ORDER BY user_id, product_name, 那么就不会出现 Using filesort 了. 例如:

mysql> EXPLAIN SELECT * FROM order_info ORDER BY user_id, product_name \G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: order_info
   partitions: NULL
         type: index
possible_keys: NULL
          key: user_product_detail_index
      key_len: 253
          ref: NULL
         rows: 9
     filtered: 100.00
        Extra: Using index
1 row in set, 1 warning (0.00 sec)
  • Using index
    "覆盖索引扫描", 表示查询在索引树中就可查找所需数据, 不用扫描表数据文件, 往往说明性能不错

  • Using temporary
    查询有使用临时表, 一般出现于排序, 分组和多表 join 的情况, 查询效率不高, 建议优化.

【相关推荐】

1. 免费mysql在线视频教程

2. MySQL最新手册教程

3. 布尔教育燕十八mysql入门视频教程

以上がMySQL パフォーマンスの最適化 -- 使用方法の概要を説明しますの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明:
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。