検索
ホームページバックエンド開発Python チュートリアルPythonでWebサイトの一括監視を実装する具体的な解説と事例

この記事では、複数の Web サイトの可用性監視を実装するための非常に実用的な Python スクリプトを、同じニーズを持つ友人が参照できるように説明します

">

一部のサイト用に最近追加されました。サイトの数が増えると、管理の複雑さも増します。「あまりにも多くのユーザーを管理するのは難しい」という言葉があるように、重要なサイトもあれば、あまりにも多くのサイトを管理することも難しいことが分かりました。もちろん、私はさらに多くのサイトを管理しなければなりません。たとえば、1 万年間問題がなかったサイトも、その日突然問題が発生した場合、私は徐々に忘れてしまいます。早急に対応する必要があるため、Web サイトの大小を問わず、まずは統一的な監視を実行する必要があります。少なくとも、そのウェブサイトにアクセスできないことについて話してください。ビジネス側からのフィードバックがあれば、私たちは十分に専門的ではないと思われますので、すぐに報告する必要があります。 Python を使用して複数の Web サイトの可用性監視を実装する方法を参照してください。 スクリプトは次のとおりです:

#!/usr/bin/env python
 
 
import pickle, os, sys, logging
from httplib import HTTPConnection, socket
from smtplib import SMTP
 
def email_alert(message, status):
  fromaddr = 'xxx@163.com'
  toaddrs = 'xxxx@qq.com'
  
  server = SMTP('smtp.163.com:25')
  server.starttls()
  server.login('xxxxx', 'xxxx')
  server.sendmail(fromaddr, toaddrs, 'Subject: %s\r\n%s' % (status, message))
  server.quit()
 
def get_site_status(url):
  response = get_response(url)
  try:
    if getattr(response, 'status') == 200:
      return 'up'
  except AttributeError:
    pass
  return 'down'
    
def get_response(url):
  try:
    conn = HTTPConnection(url)
    conn.request('HEAD', '/')
    return conn.getresponse()
  except socket.error:
    return None
  except:
    logging.error('Bad URL:', url)
    exit(1)
    
def get_headers(url):
  response = get_response(url)
  try:
    return getattr(response, 'getheaders')()
  except AttributeError:
    return 'Headers unavailable'
 
def compare_site_status(prev_results):
  
  def is_status_changed(url):
    status = get_site_status(url)
    friendly_status = '%s is %s' % (url, status)
    print friendly_status
    if urlin prev_resultsand prev_results[url] != status:
      logging.warning(status)
      email_alert(str(get_headers(url)), friendly_status)
    prev_results[url] = status
 
  return is_status_changed
 
def is_internet_reachable():
  if get_site_status('www.baidu.com') == 'down' and get_site_status('www.sohu.com') == 'down':
    return False
  return True
  
def load_old_results(file_path):
  pickledata = {}
  if os.path.isfile(file_path):
    picklefile = open(file_path, 'rb')
    pickledata = pickle.load(picklefile)
    picklefile.close()
  return pickledata
  
def store_results(file_path, data):
  output = open(file_path, 'wb')
  pickle.dump(data, output)
  output.close()
  
def main(urls):
  logging.basicConfig(level=logging.WARNING, filename='checksites.log', 
      format='%(asctime)s %(levelname)s: %(message)s', 
      datefmt='%Y-%m-%d %H:%M:%S')
  
  pickle_file = 'data.pkl'
  pickledata = load_old_results(pickle_file)
  print pickledata
    
  if is_internet_reachable():
    status_checker = compare_site_status(pickledata)
    map(status_checker, urls)
  else:
    logging.error('Either the world ended or we are not connected to the net.')
    
  store_results(pickle_file, pickledata)
 
if __name__ == '__main__':
  main(sys.argv[1:])

スクリプトの要点の説明:

1. getattr() は Python です。組み込み関数はオブジェクトを受け取り、次のことができます。オブジェクトの属性に従ってオブジェクトの値を返します

2. Compare_site_status() 関数は 2 つの関数を必要とし、1 つはシーケンスです。シーケンス

内の各要素に関数メソッドを適用することです。

以上がPythonでWebサイトの一括監視を実装する具体的な解説と事例の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
リストと配列の選択は、大規模なデータセットを扱うPythonアプリケーションの全体的なパフォーマンスにどのように影響しますか?リストと配列の選択は、大規模なデータセットを扱うPythonアプリケーションの全体的なパフォーマンスにどのように影響しますか?May 03, 2025 am 12:11 AM

forhandlinglaredataSetsinpython、usenumpyArrays forbetterperformance.1)numpyarraysarememory-effictientandfasterfornumericaloperations.2)nusinnnnedarytypeconversions.3)レバレッジベクトル化は、測定済みのマネージメーシェイメージーウェイズデイタイです

Pythonのリストと配列にメモリがどのように割り当てられるかを説明します。Pythonのリストと配列にメモリがどのように割り当てられるかを説明します。May 03, 2025 am 12:10 AM

inpython、listsusedynamicmemoryallocation with allocation、whilenumpyArraysalocatefixedmemory.1)listsallocatemorememorythanneededededinitivative.2)numpyArrayasallocateexactmemoryforements、rededicablebutlessflexibilityを提供します。

Pythonアレイ内の要素のデータ型をどのように指定しますか?Pythonアレイ内の要素のデータ型をどのように指定しますか?May 03, 2025 am 12:06 AM

inpython、youcanspecthedatatypeyfelemeremodelernspant.1)usenpynernrump.1)usenpynerp.dloatp.ploatm64、フォーマーpreciscontrolatatypes。

Numpyとは何ですか、そしてなぜPythonの数値コンピューティングにとって重要なのですか?Numpyとは何ですか、そしてなぜPythonの数値コンピューティングにとって重要なのですか?May 03, 2025 am 12:03 AM

numpyisessentialfornumericalcomputinginpythonduetoitsspeed、memory efficiency、andcomprehensivematicalfunctions.1)それは、performsoperations.2)numpyArraysaremoremory-efficientthanpythonlists.3)Itofderangeofmathematicaloperty

「隣接するメモリ割り当て」の概念と、配列にとってその重要性について説明します。「隣接するメモリ割り当て」の概念と、配列にとってその重要性について説明します。May 03, 2025 am 12:01 AM

contiguousMemoryAllocationisucial forArraysは、ForeffienceAndfastelementAccess.1)iteenablesConstantTimeAccess、O(1)、DuetodirectAddresscalculation.2)itemprovesefficiencyByAllowingMultiblementFechesperCacheLine.3)itimplifieMememm

Pythonリストをどのようにスライスしますか?Pythonリストをどのようにスライスしますか?May 02, 2025 am 12:14 AM

slicingapythonlistisdoneusingtheyntaxlist [start:stop:step] .hore'showitworks:1)startisthe indexofthefirstelementtoinclude.2)spotisthe indexofthefirmenttoeexclude.3)staptistheincrementbetbetinelements

Numpyアレイで実行できる一般的な操作は何ですか?Numpyアレイで実行できる一般的な操作は何ですか?May 02, 2025 am 12:09 AM

numpyallows forvariousoperationsonarrays:1)basicarithmeticlikeaddition、減算、乗算、および分割; 2)AdvancedperationssuchasmatrixMultiplication;

Pythonを使用したデータ分析では、配列はどのように使用されていますか?Pythonを使用したデータ分析では、配列はどのように使用されていますか?May 02, 2025 am 12:09 AM

Arraysinpython、特にnumpyandpandas、aresentialfordataanalysis、offeringspeedandeficiency.1)numpyarraysenable numpyarraysenable handling forlaredatasents andcomplexoperationslikemoverages.2)Pandasextendsnumpy'scapabivitieswithdataframesfortruc

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

mPDF

mPDF

mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

SublimeText3 Linux 新バージョン

SublimeText3 Linux 新バージョン

SublimeText3 Linux 最新バージョン

PhpStorm Mac バージョン

PhpStorm Mac バージョン

最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール