ホームページ >Java >&#&チュートリアル >二分探索木アルゴリズムの Java 実装の詳細コード説明 (写真)
二分探索木は、次のように再帰的に定義できます。二分探索木は、空の二分木、または次の特性を満たす二分木です:
(1) 左のサブツリーが空でない場合、その左のサブツリー。 subtree ノード上の任意のノードのキーワードの値が、ルート ノードのキーワードの値より小さい。
(2) 右のサブツリーが空でない場合、その右のサブツリー上のいずれかのノードのキーワードの値は、ルート ノードのキーワードの値より大きくなります。
(3) その左右の部分木自体が二分探索木です。
パフォーマンスの観点から見ると、二分探索木のすべての非葉ノードの左右のサブツリーのノード数がほぼ同じ (バランスが取れている) 場合、二分探索木の検索パフォーマンスは次のようになります。 二分探索 に近いですが、連続メモリ空間での二分探索よりも優れている点は、二分探索ツリー構造の変更 (ノードの挿入と削除) に、メモリ データの大きなセグメントの移動や一定のオーバーヘッドさえ必要ないことです。二分探索木は、連続した順序で配置されたデータセットの組み合わせを表すことができるため、二分探索木は二分ソートツリーとも呼ばれ、同じデータセットを異なる二分探索木として表すことができます。二分探索木のノードのデータ構造は次のように定義されます。
struct celltype{ records data; celltype * lchild, * rchild; } typedef celltype * BST;
Java では、ノードのデータ構造は次のように定義されます。
package wx.algorithm.search.bst; /** * Created by apple on 16/7/29. */ /** * @function 二叉搜索树中的节点 */ public class Node { //存放节点数据 int data; //指向左子节点 Node left; //指向右子节点 Node right; /** * @function 默认构造函数 * @param data 节点数据 */ public Node(int data) { this.data = data; left = null; right = null; } }
そして、二分探索木の検索プロセスは、 root ノード、if クエリ のキーワードがノードのキーワードと等しい場合、ヒットします。そうでない場合、クエリ キーワードがノード キーワードより小さい場合、左の子に入力されます。ノードキーワードより大きい場合は、右側の息子に入ります。左側の息子または右側の息子のポインタが null の場合は、対応するキーワードが見つからないことが報告されます。
BST Search(keytype k, BST F){ //在F所指的二叉查找树中查找关键字为k的记录。若成功,则返回响应结点的指针,否则返回空 if(F == NULL) //查找失败 return NULL; else if(k == F -> data.key){ //查找成功 return F; } else if (k < F -> data.key){ //查找左子树 return Search(k,F -> lchild); } else if (k > F -> data.key){ //查找右子树 return Search(k,F -> rchild); } }
新しいレコード R を二分探索ツリーに挿入します。挿入後に二分探索ツリーの構造プロパティが破壊されないことを確認する必要があります。したがって、挿入操作を実行するには、まず R がどこにあるかを調べる必要があります。検索時には、前述の再帰アルゴリズムが引き続き使用されます。検索が失敗した場合、R を含むノードが空のサブツリーの位置に挿入されます。検索が成功した場合、挿入は実行されず、操作は終了します。
void Insert(records R, BST &F){ //在F所指的二叉查找树中插入一个新纪录R if(F == NULL){ F = new celltype; F -> data = R; F -> lchild = NULL; F -> rchild = NULL; } else if (R.key < F -> data.key){ Insert(R,F -> lchild); }else if(R.key > F -> data.key){ Insert(R,F -> rchild); } //如果 R.key == F -> data.key 则返回 }
単純な置換を行うと、次のようなことが起こる可能性があります次の状況:
したがって、サブツリー内で適切な置換ノードを選択する必要があります。置換ノードは通常、正しいサブツリー内の最小のノードになります:
BinarySearchTree Java バージョン コード参照 BinarySearchTree:
package wx.algorithm.search.bst; /** * Created by apple on 16/7/29. */ /** * @function 二叉搜索树的示范代码 */ public class BinarySearchTree { //指向二叉搜索树的根节点 private Node root; //默认构造函数 public BinarySearchTree() { this.root = null; } /** * @param id 待查找的值 * @return * @function 默认搜索函数 */ public boolean find(int id) { //从根节点开始查询 Node current = root; //当节点不为空 while (current != null) { //是否已经查询到 if (current.data == id) { return true; } else if (current.data > id) { //查询左子树 current = current.left; } else { //查询右子树 current = current.right; } } return false; } /** * @param id * @function 插入某个节点 */ public void insert(int id) { //创建一个新的节点 Node newNode = new Node(id); //判断根节点是否为空 if (root == null) { root = newNode; return; } //设置current指针指向当前根节点 Node current = root; //设置父节点为空 Node parent = null; //遍历直到找到第一个插入点 while (true) { //先将父节点设置为当前节点 parent = current; //如果小于当前节点的值 if (id < current.data) { //移向左节点 current = current.left; //如果当前节点不为空,则继续向下一层搜索 if (current == null) { parent.left = newNode; return; } } else { //否则移向右节点 current = current.right; //如果当前节点不为空,则继续向下一层搜索 if (current == null) { parent.right = newNode; return; } } } } /** * @param id * @return * @function 删除树中的某个元素 */ public boolean delete(int id) { Node parent = root; Node current = root; //记录被找到的节点是父节点的左子节点还是右子节点 boolean isLeftChild = false; //循环直到找到目标节点的位置,否则报错 while (current.data != id) { parent = current; if (current.data > id) { isLeftChild = true; current = current.left; } else { isLeftChild = false; current = current.right; } if (current == null) { return false; } } //如果待删除的节点没有任何子节点 //直接将该节点的原本指向该节点的指针设置为null if (current.left == null && current.right == null) { if (current == root) { root = null; } if (isLeftChild == true) { parent.left = null; } else { parent.right = null; } } //如果待删除的节点有一个子节点,且其为左子节点 else if (current.right == null) { //判断当前节点是否为根节点 if (current == root) { root = current.left; } else if (isLeftChild) { //挂载到父节点的左子树 parent.left = current.left; } else { //挂载到父节点的右子树 parent.right = current.left; } } else if (current.left == null) { if (current == root) { root = current.right; } else if (isLeftChild) { parent.left = current.right; } else { parent.right = current.right; } } //如果待删除的节点有两个子节点 else if (current.left != null && current.right != null) { //寻找右子树中的最小值 Node successor = getSuccessor(current); if (current == root) { root = successor; } else if (isLeftChild) { parent.left = successor; } else { parent.right = successor; } successor.left = current.left; } return true; } /** * @param deleleNode * @return * @function 在树种查找最合适的节点 */ private Node getSuccessor(Node deleleNode) { Node successsor = null; Node successsorParent = null; Node current = deleleNode.right; while (current != null) { successsorParent = successsor; successsor = current; current = current.left; } if (successsor != deleleNode.right) { successsorParent.left = successsor.right; successsor.right = deleleNode.right; } return successsor; } /** * @function 以中根顺序遍历树 */ public void display() { display(root); } private void display(Node node) { //判断当前节点是否为空 if (node != null) { //首先展示左子树 display(node.left); //然后展示当前根节点的值 System.out.print(" " + node.data); //最后展示右子树的值 display(node.right); } } }
テスト関数:
package wx.algorithm.search.bst; import org.junit.Before; import org.junit.Test; /** * Created by apple on 16/7/30. */ public class BinarySearchTreeTest { BinarySearchTree binarySearchTree; @Before public void setUp() { binarySearchTree = new BinarySearchTree(); binarySearchTree.insert(3); binarySearchTree.insert(8); binarySearchTree.insert(1); binarySearchTree.insert(4); binarySearchTree.insert(6); binarySearchTree.insert(2); binarySearchTree.insert(10); binarySearchTree.insert(9); binarySearchTree.insert(20); binarySearchTree.insert(25); binarySearchTree.insert(15); binarySearchTree.insert(16); System.out.println("原始的树 : "); binarySearchTree.display(); System.out.println(""); } @Test public void testFind() { System.out.println("判断4是否存在树中 : " + binarySearchTree.find(4)); } @Test public void testInsert() { } @Test public void testDelete() { System.out.println("删除值为2的节点 : " + binarySearchTree.delete(2)); binarySearchTree.display(); System.out.println("\n 删除有一个子节点值为4的节点 : " + binarySearchTree.delete(4)); binarySearchTree.display(); System.out.println("\n 删除有两个子节点的值为10的节点 : " + binarySearchTree.delete(10)); binarySearchTree.display(); } }
以上が二分探索木アルゴリズムの Java 実装の詳細コード説明 (写真)の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。