题 タイトルが「実装」ではなく「使用」である理由をここで繰り返します:
まず第一に、専門家が提供するアルゴリズムは、効率と精度の点で私たちが作成したアルゴリズムよりも優れています。 次に、数学が苦手な人にとって、アルゴリズムを実装するために大量の公式を勉強するのは非常に苦痛です。人 繰り返しになりますが、他者が提供するアルゴリズムがニーズを満たせない場合を除き、「車輪を繰り返す」必要はありません。正 次の単語がホームです。ベイズ アルゴリズムを知らない場合は、関連情報を確認してください。ここで簡単に説明します。 1. ベイズ公式: p (a | b) = p ( ab)/p ( B) 2. ベイズ推論: P(A|B)=P(A)×P(B|A)/P(B) 言葉で表すと: 事後確率 =事前確率 一般的に使用される単純ベイズ アルゴリズムについて、以下で順番に説明します。 1) ガウス単純ベイズ:属性/特徴は正規分布 (以下に示すように) に従い、主に数値特徴に使用されると仮定します。 K i は、Scikit-Learn パッケージに付属のデータを使用します。コードと手順は次のとおりです。
>>>from sklearn import datasets ##导入包中的数据 >>> iris=datasets.load_iris() ##加载数据 >>> iris.feature_names ##显示特征名字 ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)'] >>> iris.data ##显示数据 array([[ 5.1, 3.5, 1.4, 0.2],[ 4.9, 3. , 1.4, 0.2],[ 4.7, 3.2, 1.3, 0.2]............ >>> iris.data.size ##数据大小 ---600个 >>> iris.target_names ##显示分类的名字 array(['setosa', 'versicolor', 'virginica'], dtype='<U10') >>> from sklearn.naive_bayes import GaussianNB ##导入高斯朴素贝叶斯算法 >>> clf = GaussianNB() ##给算法赋一个变量,主要是为了方便使用 >>> clf.fit(iris.data, iris.target) ##开始分类。对于量特别大的样本,可以使用函数partial_fit分类,避免一次加载过多数据到内存 >>> clf.predict(iris.data[0].reshape(1,-1)) ##验证分类。标红部分特别说明:因为predict的参数是数组,data[0]是列表,所以需要转换一下 array([0]) >>> data=np.array([6,4,6,2]) ##验证分类 >>> clf.predict(data.reshape(1,-1)) array([2])
ここで問題が発生します。正規分布に沿ってデータを判断するにはどうすればよいでしょうか。 R言語には関連する関数の判定もあり、あるいは直接描画して見ることもできますが、これらはすべてP(x, y)を座標系で直接
描画できる状況です。この例ではまだわかりませんが、この部分は後で追加します。
2) 多項分布 Naive Bayes: テキスト分類によく使用され、特徴は単語であり、値は単語の出現回数です。
##示例来在官方文档,详细说明见第一个例子 >>> import numpy as np >>> X = np.random.randint(5, size=(6, 100)) ##返回随机整数值:范围[0,5) 大小6*100 6行100列 >>> y = np.array([1, 2, 3, 4, 5, 6]) >>> from sklearn.naive_bayes import MultinomialNB >>> clf = MultinomialNB() >>> clf.fit(X, y) MultinomialNB(alpha=1.0, class_prior=None, fit_prior=True) >>> print(clf.predict(X[2])) [3]
3) Bernoulli Naive Bayes: 各特徴量はブール型であり、結果は 0 または 1、つまり、出現するか否かです ##示例来在官方文档,详细说明见第一个例子
>>> import numpy as np
>>> X = np.random.randint(2, size=(6, 100))
>>> Y = np.array([1, 2, 3, 4, 4, 5])
>>> from sklearn.naive_bayes import BernoulliNB
>>> clf = BernoulliNB()
>>> clf.fit(X, Y)
BernoulliNB(alpha=1.0, binarize=0.0, class_prior=None, fit_prior=True)
>>> print(clf.predict(X[2]))
[3]
以上がPython で単純ベイズ アルゴリズムを使用する方法の紹介の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Pythonの柔軟性は、マルチパラダイムサポートと動的タイプシステムに反映されていますが、使いやすさはシンプルな構文とリッチ標準ライブラリに由来しています。 1。柔軟性:オブジェクト指向、機能的および手続き的プログラミングをサポートし、動的タイプシステムは開発効率を向上させます。 2。使いやすさ:文法は自然言語に近く、標準的なライブラリは幅広い機能をカバーし、開発プロセスを簡素化します。

Pythonは、初心者から上級開発者までのすべてのニーズに適した、そのシンプルさとパワーに非常に好まれています。その汎用性は、次のことに反映されています。1)学習と使用が簡単、シンプルな構文。 2)Numpy、Pandasなどの豊富なライブラリとフレームワーク。 3)さまざまなオペレーティングシステムで実行できるクロスプラットフォームサポート。 4)作業効率を向上させるためのスクリプトおよび自動化タスクに適しています。

はい、1日2時間でPythonを学びます。 1.合理的な学習計画を作成します。2。適切な学習リソースを選択します。3。実践を通じて学んだ知識を統合します。これらの手順は、短時間でPythonをマスターするのに役立ちます。

Pythonは迅速な開発とデータ処理に適していますが、Cは高性能および基礎となる制御に適しています。 1)Pythonは、簡潔な構文を備えた使いやすく、データサイエンスやWeb開発に適しています。 2)Cは高性能で正確な制御を持ち、ゲームやシステムのプログラミングでよく使用されます。

Pythonを学ぶのに必要な時間は、人によって異なり、主に以前のプログラミングの経験、学習の動機付け、学習リソースと方法、学習リズムの影響を受けます。現実的な学習目標を設定し、実用的なプロジェクトを通じて最善を尽くします。

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

Safe Exam Browser
Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

ドリームウィーバー CS6
ビジュアル Web 開発ツール

Dreamweaver Mac版
ビジュアル Web 開発ツール
