検索

Python のマジック記述子

Mar 18, 2017 am 11:36 AM
python

はじめに

ディスクリプター (記述子) は、Python 言語の奥深くて重要な黒魔術であり、Python 言語の中核で広く使用されており、Pythonプログラマーのツールボックスに新たな次元を追加します。 。この記事では、記述子の定義といくつかの一般的なシナリオについて説明し、記事の最後に __getattr__getattribute____getitem__ を追加します。 はプロパティへのアクセスを伴うマジックメソッド__getattr__getattribute____getitem__这三个同样涉及到属性访问的魔术方法

描述符的定义

descr__get__(self, obj, objtype=None) --> value
descr.__set__(self, obj, value) --> None
descr.__delete__(self, obj) --> None

只要一个object attribute(对象属性)定义了上面三个方法中的任意一个,那么这个类就可以被称为描述符类。

描述符基础

下面这个例子中我们创建了一个RevealAcess类,并且实现了__get__方法,现在这个类可以被称为一个描述符类。

class RevealAccess(object):
    def __get__(self, obj, objtype):
        print('self in RevealAccess: {}'.format(self))
        print('self: {}\nobj: {}\nobjtype: {}'.format(self, obj, objtype))
class MyClass(object):
    x = RevealAccess()
    def test(self):
        print('self in MyClass: {}'.format(self))

EX1实例属性

接下来我们来看一下__get__方法的各个参数的含义,在下面这个例子中,self即RevealAccess类的实例x,obj即MyClass类的实例m,objtype顾名思义就是MyClass类自身。从输出语句可以看出,m.x访问描述符x会调用__get__方法。

>>> m = MyClass()
>>> m.test()
self in MyClass: <__main__.MyClass object at 0x7f19d4e42160>
>>> m.x
self in RevealAccess: <__main__.RevealAccess object at 0x7f19d4e420f0>
self: <__main__.RevealAccess object at 0x7f19d4e420f0>
obj: <__main__.MyClass object at 0x7f19d4e42160>
objtype: <class &#39;__main__.MyClass&#39;>

EX2类属性

如果通过类直接访问属性x,那么obj接直接为None,这还是比较好理解,因为不存在MyClass的实例。

>>> MyClass.x
self in RevealAccess: <__main__.RevealAccess object at 0x7f53651070f0>
self: <__main__.RevealAccess object at 0x7f53651070f0>
obj: None
objtype: <class &#39;__main__.MyClass&#39;>

描述符的原理

描述符触发

上面这个例子中,我们分别从实例属性和类属性的角度列举了描述符的用法,下面我们来仔细分析一下内部的原理:

  • 如果是对实例属性进行访问,实际上调用了基类object的__getattribute__方法,在这个方法中将obj.d转译成了type(obj).__dict__['d'].__get__(obj, type(obj))

  • 如果是对类属性进行访问,相当于调用了元类type的__getattribute__方法,它将cls.d转译成cls.__dict__['d'].__get__(None, cls),这里__get__()的obj为的None,因为不存在实例。

简单讲一下__getattribute__魔术方法,这个方法在我们访问一个对象的属性的时候会被无条件调用,详细的细节比如和__getattr__getitem__的区别我会在文章的末尾做一个额外的补充,我们暂时并不深究。

描述符优先级

首先,描述符分为两种:

  • 如果一个对象同时定义了__get__()和__set__()方法,则这个描述符被称为data descriptor

  • 如果一个对象只定义了__get__()方法,则这个描述符被称为non-data descriptor

我们对属性进行访问的时候存在下面四种情况:

  • data descriptor

  • instance dict

  • non-data descriptor

  • __getattr__()

它们的优先级大小是:

data descriptor > instance dict > non-data descriptor > __getattr__()

这是什么意思呢?就是说如果实例对象obj中出现了同名的data descriptor->d 和 instance attribute->dobj.d对属性d进行访问的时候,由于data descriptor具有更高的优先级,Python便会调用type(obj).__dict__['d'].__get__(obj, type(obj))而不是调用obj.__dict__[‘d’]。但是如果描述符是个non-data descriptor,Python则会调用obj.__dict__['d']

Property

每次使用描述符的时候都定义一个描述符类,这样看起来非常繁琐。Python提供了一种简洁的方式用来向属性添加数据描述符。

property(fget=None, fset=None, fdel=None, doc=None) -> property attribute

fget、fset和fdel分别是类的getter、setter和deleter方法。我们通过下面的一个示例来说明如何使用Property:

class Account(object):
    def __init__(self):
        self._acct_num = None
    def get_acct_num(self):
        return self._acct_num
    def set_acct_num(self, value):
        self._acct_num = value
    def del_acct_num(self):
        del self._acct_num
    acct_num = property(get_acct_num, set_acct_num, del_acct_num, &#39;_acct_num property.&#39;)

如果acct是Account的一个实例,acct.acct_num将会调用getter,acct.acct_num = value将调用setter,del acct_num.acct_num将调用deleter。

>>> acct = Account()
>>> acct.acct_num = 1000
>>> acct.acct_num
1000

Python也提供了@property装饰器,对于简单的应用场景可以使用它来创建属性。一个属性对象拥有getter,setter和deleter装饰器方法,可以使用它们通过对应的被装饰函数的accessor函数创建属性的拷贝。

class Account(object):
    def __init__(self):
        self._acct_num = None
    @property
     # the _acct_num property. the decorator creates a read-only property
    def acct_num(self):
        return self._acct_num
    @acct_num.setter
    # the _acct_num property setter makes the property writeable
    def set_acct_num(self, value):
        self._acct_num = value
    @acct_num.deleter
    def del_acct_num(self):
        del self._acct_num

如果想让属性只读,只需要去掉setter方法。

在运行时创建描述符

我们可以在运行时添加property属性:

class Person(object):
    def addProperty(self, attribute):
        # create local setter and getter with a particular attribute name
        getter = lambda self: self._getProperty(attribute)
        setter = lambda self, value: self._setProperty(attribute, value)
        # construct property attribute and add it to the class
        setattr(self.__class__, attribute, property(fget=getter, \
                                                    fset=setter, \
                                                    doc="Auto-generated method"))
    def _setProperty(self, attribute, value):
        print("Setting: {} = {}".format(attribute, value))
        setattr(self, &#39;_&#39; + attribute, value.title())
    def _getProperty(self, attribute):
        print("Getting: {}".format(attribute))
        return getattr(self, &#39;_&#39; + attribute)
>>> user = Person()
>>> user.addProperty(&#39;name&#39;)
>>> user.addProperty(&#39;phone&#39;)
>>> user.name = &#39;john smith&#39;
Setting: name = john smith
>>> user.phone = &#39;12345&#39;
Setting: phone = 12345
>>> user.name
Getting: name
&#39;John Smith&#39;
>>> user.__dict__
{&#39;_phone&#39;: &#39;12345&#39;, &#39;_name&#39;: &#39;John Smith&#39;}

静态方法和类方法

我们可以使用描述符来模拟Python中的@staticmethod@classmethodと同じです。

🎜ディスクリプタの定義🎜
class StaticMethod(object):
    def __init__(self, f):
        self.f = f
    def __get__(self, obj, objtype=None):
        return self.f
🎜 オブジェクト属性(オブジェクト属性)で上記3つのメソッドのいずれかが定義されていれば、このクラスをディスクリプタクラスと呼ぶことができます。 🎜🎜記述子の基本🎜🎜 次の例では、RevealAcess クラスを作成し、__get__ メソッドを実装します。これで、このクラスを記述子クラスと呼ぶことができます。 🎜
class MyClass(object):
    @StaticMethod
    def get_x(x):
        return x
print(MyClass.get_x(100))  # output: 100
🎜EX1 インスタンスの属性🎜🎜 次に、__get__ メソッドの各パラメーターの意味を見てみましょう。次の例では、self です。 > つまり、RevealAccess クラスのインスタンス x、obj は MyClass クラスのインスタンス m、そして objtype は、名前が示すように MyClass クラス自体です。出力ステートメントからわかるように、記述子 x にアクセスする m.x__get__ メソッドを呼び出します。 🎜
class ClassMethod(object):
    def __init__(self, f):
        self.f = f
    def __get__(self, obj, klass=None):
        if klass is None:
            klass = type(obj)
        def newfunc(*args):
            return self.f(klass, *args)
        return newfunc
🎜EX2 クラス属性🎜🎜 属性 x がクラスを通じて直接アクセスされる場合、 obj 接続は直接 None になります。 MyClass のインスタンスがないため、理解しやすくなります。 🎜
In [1]: class Test(object):
    ...:     def __getattribute__(self, item):
    ...:         print(&#39;call __getattribute__&#39;)
    ...:         return super(Test, self).__getattribute__(item)
    ...:     def __getattr__(self, item):
    ...:         return &#39;call __getattr__&#39;
    ...:
In [2]: Test().a
call __getattribute__
Out[2]: &#39;call __getattr__&#39;
🎜記述子の原理🎜

記述子のトリガー

🎜 上の例では、インスタンス属性とクラス属性の観点から記述子の使用法をリストしました。内部原理を注意深く分析してみましょう。 class=" list-paddingleft-2">
  • 🎜インスタンス属性にアクセスすると、実際には基本クラスオブジェクトの__getattribute__メソッドが呼び出されます。このメソッドでは、obj.dをに変換します。 type(obj).__dict__['d'].__get__(obj, type(obj))。 🎜
  • 🎜class 属性 にアクセスすると、メタクラス タイプの __getattribute__ メソッドを呼び出すことと同じになり、cls.d が cls__['d' に変換されます。 ].__get__(None, cls) の場合、インスタンスがないため、__get__() の obj は None になります。 🎜
  • 🎜 __getattribute__ マジック メソッドについて簡単に説明します。このメソッドは、オブジェクトの属性にアクセスするときに無条件で呼び出されます。詳細については、 などを参照してください。 __getattr、<code>__getitem__ 記事の最後に補足しますが、今は深入りしません。 🎜

    記述子の優先度

    🎜 まず、記述子は 2 つのタイプに分けられます: 🎜
    • 🎜 オブジェクトが __get__() と __set__() の両方を定義している場合) メソッドの場合、この記述子は データ記述子 と呼ばれます。 🎜
    • 🎜 オブジェクトが __get__() メソッドのみを定義している場合、この記述子は 非データ記述子 と呼ばれます。 🎜
    🎜属性にアクセスする場合は 4 つの状況があります: 🎜
    • 🎜データ記述子🎜
    • 🎜インスタンス辞書🎜
    • 🎜非データ記述子🎜
    • 🎜__getattr__()🎜
    🎜優先サイズは次のとおりです: 🎜
    class Storage(dict):
        """
        A Storage object is like a dictionary except `obj.foo` can be used
        in addition to `obj[&#39;foo&#39;]`.
        """
        def __getattr__(self, key):
            try:
                return self[key]
            except KeyError as k:
                raise AttributeError(k)
        def __setattr__(self, key, value):
            self[key] = value
        def __delattr__(self, key):
            try:
                del self[key]
            except KeyError as k:
                raise AttributeError(k)
        def __repr__(self):
            return &#39;<Storage &#39; + dict.__repr__(self) + &#39;>&#39;
    🎜これはどういう意味ですか?つまり、インスタンス オブジェクト obj に同じ名前の data descriptor->dinstanceattribute->d が存在する場合、obj.d 属性 d にアクセスすると、データ記述子の優先順位が高いため、Python は type(obj).__dict__['d'].__get__(obj, obj.__dict__['d'] を呼び出す代わりに type(obj )) を呼び出します。ただし、記述子が非データ記述子の場合、Python は obj.__dict__['d'] を呼び出します。 🎜🎜プロパティ🎜🎜記述子を使用するたびに記述子クラスを定義するのは、非常に面倒に思えます。 Python は、データ記述子をプロパティに追加する簡潔な方法を提供します。 🎜
    >>> s = Storage(a=1)
    >>> s[&#39;a&#39;]
    1
    >>> s.a
    1
    >>> s.a = 2
    >>> s[&#39;a&#39;]
    2
    >>> del s.a
    >>> s.a
    ...
    AttributeError: &#39;a&#39;
    🎜fget、fset、fdel はそれぞれ、クラスのゲッター、セッター、デリーター メソッドです。次の例を使用して、Property の使用方法を説明します。 🎜
    class MyList(object):
        def __init__(self, *args):
            self.numbers = args
        def __getitem__(self, item):
            return self.numbers[item]
    my_list = MyList(1, 2, 3, 4, 6, 5, 3)
    print my_list[2]
    🎜 acct が Account のインスタンスの場合、acct.acct_num はゲッターを呼び出し、acct.acct_num = value はセッターを呼び出し、del acct_num.acct_num はデリーターを呼び出します。 。 🎜
    class CaseInsensitiveDict(dict):
        @property
        def lower_keys(self):
            if not hasattr(self, &#39;_lower_keys&#39;) or not self._lower_keys:
                self._lower_keys = dict((k.lower(), k) for k in self.keys())
            return self._lower_keys
        def _clear_lower_keys(self):
            if hasattr(self, &#39;_lower_keys&#39;):
                self._lower_keys.clear()
        def __contains__(self, key):
            return key.lower() in self.lower_keys
        def __getitem__(self, key):
            if key in self:
                return dict.__getitem__(self, self.lower_keys[key.lower()])
        def __setitem__(self, key, value):
            dict.__setitem__(self, key, value)
            self._clear_lower_keys()
        def __delitem__(self, key):
            dict.__delitem__(self, key)
            self._lower_keys.clear()
        def get(self, key, default=None):
            if key in self:
                return self[key]
            else:
                return default
    🎜Python は、単純なアプリケーション シナリオのプロパティを作成するために使用できる @property デコレータも提供します。プロパティ オブジェクトには getter、setter、および delete デコレータ メソッドがあり、これらを使用して、対応する装飾関数のアクセサ関数を通じてプロパティのコピーを作成できます。 🎜
    >>> d = CaseInsensitiveDict()
    >>> d[&#39;ziwenxie&#39;] = &#39;ziwenxie&#39;
    >>> d[&#39;ZiWenXie&#39;] = &#39;ZiWenXie&#39;
    >>> print(d)
    {&#39;ZiWenXie&#39;: &#39;ziwenxie&#39;, &#39;ziwenxie&#39;: &#39;ziwenxie&#39;}
    >>> print(d[&#39;ziwenxie&#39;])
    ziwenxie
    # d[&#39;ZiWenXie&#39;] => d[&#39;ziwenxie&#39;]
    >>> print(d[&#39;ZiWenXie&#39;])
    ziwenxie
    🎜 プロパティを読み取り専用にしたい場合は、setter メソッドを削除するだけです。 🎜🎜実行時に記述子を作成する🎜🎜実行時にプロパティ属性を追加できます: 🎜rrreeerrreee🎜静的メソッドとクラスメソッド🎜🎜記述子を使用して、Python の @staticmethod をシミュレートできます コードの実装>@クラスメソッドコード>。まずは下の表を見てみましょう: 🎜<table> <thead><tr class="firstRow"> <th>Transformation</th> <th>Called from an Object</th> <th>Called from a Class</th> </tr></thead> <tbody> <tr> <td>function</td> <td>f(obj, *args)</td> <td>f(*args)</td> </tr> <tr> <td>staticmethod</td> <td>f(*args)</td> <td>f(*args)</td> </tr> <tr> <td>classmethod</td> <td>f(type(obj), *args)</td> <td>f(klass, *args)</td> </tr> </tbody> </table> <h3 id="静态方法">静态方法</h3> <p>对于静态方法<code>fc.fC.f是等价的,都是直接查询object.__getattribute__(c, ‘f’)或者object.__getattribute__(C, ’f‘)。静态方法一个明显的特征就是没有self变量。

    静态方法有什么用呢?假设有一个处理专门数据的容器类,它提供了一些方法来求平均数,中位数等统计数据方式,这些方法都是要依赖于相应的数据的。但是类中可能还有一些方法,并不依赖这些数据,这个时候我们可以将这些方法声明为静态方法,同时这也可以提高代码的可读性。

    使用非数据描述符来模拟一下静态方法的实现:

    class StaticMethod(object):
        def __init__(self, f):
            self.f = f
        def __get__(self, obj, objtype=None):
            return self.f

    我们来应用一下:

    class MyClass(object):
        @StaticMethod
        def get_x(x):
            return x
    print(MyClass.get_x(100))  # output: 100

    类方法

    Python的@classmethod@staticmethod的用法有些类似,但是还是有些不同,当某些方法只需要得到类的引用而不关心类中的相应的数据的时候就需要使用classmethod了。

    使用非数据描述符来模拟一下类方法的实现:

    class ClassMethod(object):
        def __init__(self, f):
            self.f = f
        def __get__(self, obj, klass=None):
            if klass is None:
                klass = type(obj)
            def newfunc(*args):
                return self.f(klass, *args)
            return newfunc

    其他的魔术方法

    首次接触Python魔术方法的时候,我也被__get____getattribute____getattr____getitem__之间的区别困扰到了,它们都是和属性访问相关的魔术方法,其中重写__getattr____getitem__来构造一个自己的集合类非常的常用,下面我们就通过一些例子来看一下它们的应用。

    __getattr__

    Python默认访问类/实例的某个属性都是通过__getattribute__来调用的,__getattribute__会被无条件调用,没有找到的话就会调用__getattr__。如果我们要定制某个类,通常情况下我们不应该重写__getattribute__,而是应该重写__getattr__,很少看见重写__getattribute__的情况。

    从下面的输出可以看出,当一个属性通过__getattribute__无法找到的时候会调用__getattr__

    In [1]: class Test(object):
        ...:     def __getattribute__(self, item):
        ...:         print(&#39;call __getattribute__&#39;)
        ...:         return super(Test, self).__getattribute__(item)
        ...:     def __getattr__(self, item):
        ...:         return &#39;call __getattr__&#39;
        ...:
    In [2]: Test().a
    call __getattribute__
    Out[2]: &#39;call __getattr__&#39;

    应用

    对于默认的字典,Python只支持以obj['foo']形式来访问,不支持obj.foo的形式,我们可以通过重写__getattr__让字典也支持obj['foo']的访问形式,这是一个非常经典常用的用法:

    class Storage(dict):
        """
        A Storage object is like a dictionary except `obj.foo` can be used
        in addition to `obj[&#39;foo&#39;]`.
        """
        def __getattr__(self, key):
            try:
                return self[key]
            except KeyError as k:
                raise AttributeError(k)
        def __setattr__(self, key, value):
            self[key] = value
        def __delattr__(self, key):
            try:
                del self[key]
            except KeyError as k:
                raise AttributeError(k)
        def __repr__(self):
            return &#39;<Storage &#39; + dict.__repr__(self) + &#39;>&#39;

    我们来使用一下我们自定义的加强版字典:

    >>> s = Storage(a=1)
    >>> s[&#39;a&#39;]
    1
    >>> s.a
    1
    >>> s.a = 2
    >>> s[&#39;a&#39;]
    2
    >>> del s.a
    >>> s.a
    ...
    AttributeError: &#39;a&#39;

    __getitem__

    getitem用于通过下标[]的形式来获取对象中的元素,下面我们通过重写__getitem__来实现一个自己的list。

    class MyList(object):
        def __init__(self, *args):
            self.numbers = args
        def __getitem__(self, item):
            return self.numbers[item]
    my_list = MyList(1, 2, 3, 4, 6, 5, 3)
    print my_list[2]

    这个实现非常的简陋,不支持slice和step等功能,请读者自行改进,这里我就不重复了。

    应用

    下面是参考requests库中对于__getitem__的一个使用,我们定制了一个忽略属性大小写的字典类。

    程序有些复杂,我稍微解释一下:由于这里比较简单,没有使用描述符的需求,所以使用了@property装饰器来代替,lower_keys的功能是将实例字典中的键全部转换成小写并且存储在字典self._lower_keys中。重写了__getitem__方法,以后我们访问某个属性首先会将键转换为小写的方式,然后并不会直接访问实例字典,而是会访问字典self._lower_keys去查找。赋值/删除操作的时候由于实例字典会进行变更,为了保持self._lower_keys和实例字典同步,首先清除self._lower_keys的内容,以后我们重新查找键的时候再调用__getitem__的时候会重新新建一个self._lower_keys

    class CaseInsensitiveDict(dict):
        @property
        def lower_keys(self):
            if not hasattr(self, &#39;_lower_keys&#39;) or not self._lower_keys:
                self._lower_keys = dict((k.lower(), k) for k in self.keys())
            return self._lower_keys
        def _clear_lower_keys(self):
            if hasattr(self, &#39;_lower_keys&#39;):
                self._lower_keys.clear()
        def __contains__(self, key):
            return key.lower() in self.lower_keys
        def __getitem__(self, key):
            if key in self:
                return dict.__getitem__(self, self.lower_keys[key.lower()])
        def __setitem__(self, key, value):
            dict.__setitem__(self, key, value)
            self._clear_lower_keys()
        def __delitem__(self, key):
            dict.__delitem__(self, key)
            self._lower_keys.clear()
        def get(self, key, default=None):
            if key in self:
                return self[key]
            else:
                return default

    我们来调用一下这个类:

    >>> d = CaseInsensitiveDict()
    >>> d[&#39;ziwenxie&#39;] = &#39;ziwenxie&#39;
    >>> d[&#39;ZiWenXie&#39;] = &#39;ZiWenXie&#39;
    >>> print(d)
    {&#39;ZiWenXie&#39;: &#39;ziwenxie&#39;, &#39;ziwenxie&#39;: &#39;ziwenxie&#39;}
    >>> print(d[&#39;ziwenxie&#39;])
    ziwenxie
    # d[&#39;ZiWenXie&#39;] => d[&#39;ziwenxie&#39;]
    >>> print(d[&#39;ZiWenXie&#39;])
    ziwenxie

    以上がPython のマジック記述子の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

    声明
    この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
    Pythonを使用した科学コンピューティングでアレイはどのように使用されていますか?Pythonを使用した科学コンピューティングでアレイはどのように使用されていますか?Apr 25, 2025 am 12:28 AM

    Arraysinpython、特にvianumpy、arecrucialinscientificComputing fortheirefficienty andversitility.1)彼らは、fornumericaloperations、data analysis、andmachinelearning.2)numpy'simplementation incensuresfasteroperationsthanpasteroperations.3)arayableminablecickick

    同じシステムで異なるPythonバージョンをどのように処理しますか?同じシステムで異なるPythonバージョンをどのように処理しますか?Apr 25, 2025 am 12:24 AM

    Pyenv、Venv、およびAnacondaを使用して、さまざまなPythonバージョンを管理できます。 1)Pyenvを使用して、複数のPythonバージョンを管理します。Pyenvをインストールし、グローバルバージョンとローカルバージョンを設定します。 2)VENVを使用して仮想環境を作成して、プロジェクトの依存関係を分離します。 3)Anacondaを使用して、データサイエンスプロジェクトでPythonバージョンを管理します。 4)システムレベルのタスク用にシステムPythonを保持します。これらのツールと戦略を通じて、Pythonのさまざまなバージョンを効果的に管理して、プロジェクトのスムーズな実行を確保できます。

    標準のPythonアレイでnumpyアレイを使用することの利点は何ですか?標準のPythonアレイでnumpyアレイを使用することの利点は何ですか?Apr 25, 2025 am 12:21 AM

    numpyarrayshaveveraladvantages-averstandardpythonarrays:1)thealmuchfasterduetocベースのインプレンテーション、2)アレモレメモリ効率、特にlargedatasets、および3)それらは、拡散化された、構造化された形成術科療法、

    アレイの均質な性質はパフォーマンスにどのように影響しますか?アレイの均質な性質はパフォーマンスにどのように影響しますか?Apr 25, 2025 am 12:13 AM

    パフォーマンスに対する配列の均一性の影響は二重です。1)均一性により、コンパイラはメモリアクセスを最適化し、パフォーマンスを改善できます。 2)しかし、タイプの多様性を制限し、それが非効率につながる可能性があります。要するに、適切なデータ構造を選択することが重要です。

    実行可能なPythonスクリプトを作成するためのベストプラクティスは何ですか?実行可能なPythonスクリプトを作成するためのベストプラクティスは何ですか?Apr 25, 2025 am 12:11 AM

    craftexecutablepythonscripts、次のようになります

    numpyアレイは、アレイモジュールを使用して作成された配列とどのように異なりますか?numpyアレイは、アレイモジュールを使用して作成された配列とどのように異なりますか?Apr 24, 2025 pm 03:53 PM

    numpyarraysarasarebetterfornumeroperations andmulti-dimensionaldata、whilethearraymoduleissuitable forbasic、1)numpyexcelsinperformance and forlargedatasentassandcomplexoperations.2)thearraymuremememory-effictientivearientfa

    Numpyアレイの使用は、Pythonで配列モジュール配列の使用と比較してどのように比較されますか?Numpyアレイの使用は、Pythonで配列モジュール配列の使用と比較してどのように比較されますか?Apr 24, 2025 pm 03:49 PM

    NumPyArraySareBetterforHeavyNumericalComputing、whilethearrayarayismoreSuitableformemory-constrainedprojectswithsimpledatatypes.1)numpyarraysofferarays andatiledance andpeperancedatasandatassandcomplexoperations.2)thearraymoduleisuleiseightweightandmemememe-ef

    CTypesモジュールは、Pythonの配列にどのように関連していますか?CTypesモジュールは、Pythonの配列にどのように関連していますか?Apr 24, 2025 pm 03:45 PM

    ctypesallowsinging andmanipulatingc-stylearraysinpython.1)usectypestointerfacewithclibrariesforperformance.2)createc-stylearraysfornumericalcomputations.3)passarraystocfunctions foreffientientoperations.how、how、becuutiousmorymanagemation、performanceo

    See all articles

    ホットAIツール

    Undresser.AI Undress

    Undresser.AI Undress

    リアルなヌード写真を作成する AI 搭載アプリ

    AI Clothes Remover

    AI Clothes Remover

    写真から衣服を削除するオンライン AI ツール。

    Undress AI Tool

    Undress AI Tool

    脱衣画像を無料で

    Clothoff.io

    Clothoff.io

    AI衣類リムーバー

    Video Face Swap

    Video Face Swap

    完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

    ホットツール

    mPDF

    mPDF

    mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。

    VSCode Windows 64 ビットのダウンロード

    VSCode Windows 64 ビットのダウンロード

    Microsoft によって発売された無料で強力な IDE エディター

    SublimeText3 中国語版

    SublimeText3 中国語版

    中国語版、とても使いやすい

    ゼンドスタジオ 13.0.1

    ゼンドスタジオ 13.0.1

    強力な PHP 統合開発環境

    ZendStudio 13.5.1 Mac

    ZendStudio 13.5.1 Mac

    強力な PHP 統合開発環境