ホームページ >バックエンド開発 >Python チュートリアル >Python プログラミングにおける基本的な数学的計算方法

Python プログラミングにおける基本的な数学的計算方法

高洛峰
高洛峰オリジナル
2017-03-13 18:08:052091ブラウズ

この記事では、主に Pythonプログラミング における基本的な数学的計算の使用方法を紹介し、必要な方は

Numbers
の規則を参照してください。数字については比較的単純で、基本的には小学校の数学レベルで理解できます。

それでは、ゼロベース学習として、小学校の算数の問題の計算から始めましょう。なぜなら、ここから数学の基礎知識は確実に合格するからです。


上の表示は対話型

モードです
​​ このような数字を整数と呼びます。

比較的大きな数値を入力した場合、2 番目の数値、つまり複数の 3 で構成される整数は、Python では長整数と呼ばれます。数値が長整数であることを示すために、Python では末尾に L が表示されます。実際、Python は入力された大きな整数を長整数として自動的に処理できるようになりました。ここで区別する必要はありません。 3 番目のものは数学では 10 進数と呼ばれます。ここではまだそう呼ぶことができますが、多くのプログラミング言語と同様に、これを「浮動小数点数」と呼ぶのが通例です。この名前の由来については、少し説明がありますので、興味のある方はググってみてください。

上記の例では、すべて符号なし (または非負の数) であると言えます。負の数を表現したい場合は、数学の表現方法と同じで、先頭にマイナス記号を入力します。

ここで話しているのはすべて 10 進数であることに注意してください。

プログラミングでは 10 進数に加えて、2 進数、8 進数、16 進数も使用できます。もちろん、60 進数が使用されることはあまりありません (実際、時間の記録方法は典型的な 60 進数です)。

具体的には、Python では各数値がオブジェクトです。たとえば、先ほど入力した 3 はオブジェクトです。各オブジェクトはメモリ内に独自のアドレスを持ち、それがオブジェクトのアイデンティティとなります。

>>> 3
3
>>> 3333333333333333333333333333333333333333
3333333333333333333333333333333333333333L
>>> 3.222222
3.222222


組み込みの

関数
id() を使用して、メモリ アドレス、つまり各オブジェクトの ID を表示します。

組み込み関数は、英語ではbuilt-in Functionと呼ばれます。読者はその名前に基づいてそれが何であるかをほぼ推測できます。はい、これは Python で定義された 内部関数 です。

上記の 3 つの異なる数値は、3 つの異なるメモリ アドレスを持つ 3 つの異なるオブジェクトです。特に、数学的には 3 と 3.0 は等しいですが、ここではそれらは異なるオブジェクトであることに注意してください。

id() を使用して取得されたメモリ アドレスは読み取り専用であり、変更できません。
「identity」を理解したところで、「type」を見てみましょう。type() を使用するための組み込み関数もあります。

>>> id(3)
140574872
>>> id(3.222222)
140612356
>>> id(3.0)
140612356
>>>


組み込み関数を使用してオブジェクトのタイプを確認できます。 5fceb93f28694900901835b0649435fb は 3 が

整数型
(整数) であることを示します; eda9888902451b875ad44aab870644d7 はオブジェクトが

浮動小数点型

(浮動小数点実数) であることを示します。 id() の結果と同様に、type() の結果も読み取り専用です。 オブジェクトの値に関しては、ここではオブジェクト自体です。 オブジェクトを理解するのは難しくないようです。自信を持って続けてください。

変数

プログラミング言語では、Correspondence を作成するために「変数」と「数値」(厳密には Python のオブジェクト)がよく使用されます。例:

>>> type(3)
<type &#39;int&#39;>
>>> type(3.0)
<type &#39;float&#39;>
>>> type(3.222222)
<type &#39;float&#39;>


この例では、x = 5 により変数 (x) と数値 (5) の間の対応関係が確立され、次に x と 6 の間の対応関係が確立されます。 x は最初に 5 であり、次に 6 であることがわかります。


Python では、次の文が非常に重要です: オブジェクトには型があり、変数には型がありません。どのように理解すればよいでしょうか?

まず第一に、5 と 6 は両方とも整数です。Python はそれらに「整数」型データと呼ばれる名前を付けます。または、

データ型

は int で表される整数です。

私たちが Python で 5 と 6 を書くと、コンピュータ少女はこれら 2 つのオブジェクトを記憶のどこかに自動的に作成します (オブジェクトの定義については後で説明します。最初にここで使用できます。そして徐々に明らかになります)意味)、それは 2 つの彫刻を構築するようなもので、1 つは 5 のような形状をし、もう 1 つは 6 のような形状をしています。これらは 2 つのオブジェクトであり、これら 2 つのオブジェクトの型は int です。 x はどうですか?これはラベルのようなもので、x = 5 のとき、ラベル x は 5 に結び付けられます。この x を通して、5 が連続して表示されるので、インタラクティブ モードでは、x によって出力された結果が 5 になります。人々には x が 5 であるように見えますが、実際には 5 には x というラベルが付いています。同様に、x = 6 の場合、ラベルの位置が変更され、6 に付けられます。

所以,这个标签 x 没有类型之说,它不仅可以贴在整数类型的对象上,还能贴在其它类型的对象上,比如后面会介绍到的 str(字符串)类型的对象等等。

这是 Python 区别于一些语言非常重要的地方。

四则运算
按照下面要求,在交互模式中运行,看看得到的结果和用小学数学知识运算之后得到的结果是否一致


>>> 2+5
7
>>> 5-2
3
>>> 10/2
5
>>> 5*2
10
>>> 10/5+1
3
>>> 2*3-4
2


上面的运算中,分别涉及到了四个运算符号:加(+)、减(-)、乘(*)、除(/)

另外,我相信看官已经发现了一个重要的公理:

在计算机中,四则运算和小学数学中学习过的四则运算规则是一样的

要不说人是高等动物呢,自己发明的东西,一定要继承自己已经掌握的知识,别跟自己的历史过不去。伟大的科学家们,在当初设计计算机的时候就想到列位现在学习的需要了,一定不能让后世子孙再学新的运算规则,就用小学数学里面的好了。感谢那些科学家先驱者,泽被后世。

下面计算三个算术题,看看结果是什么


4 + 2
4.0 + 2
4.0 + 2.0


看官可能愤怒了,这么简单的题目,就不要劳驾计算机了,太浪费了。

别着急,还是要运算一下,然后看看结果,有没有不一样?要仔细观察哦。


>>> 4+2
6
>>> 4.0+2
6.0
>>> 4.0+2.0
6.0


不一样的地方是:第一个式子结果是 6,这是一个整数;后面两个是 6.0,这是浮点数。

定义 1:类似 4、-2、129486655、-988654、0 这样形式的数,称之为整数
定义 2:类似 4.0、-2.0、2344.123、3.1415926 这样形式的数,称之为浮点数
对这两个的定义,不用死记硬背,google 一下。记住爱因斯坦说的那句话:书上有的我都不记忆(是这么的说?好像是,大概意思,反正我也不记忆)。后半句他没说,我补充一下:忘了就 google。

似乎计算机做一些四则运算是不在话下的,但是,有一个问题请你务必注意:在数学中,整数是可以无限大的,但是在计算机中,整数不能无限大。为什么呢?(我推荐你去 google,其实计算机的基本知识中肯定学习过了。)因此,就会有某种情况出现,就是参与运算的数或者运算结果超过了计算机中最大的数了,这种问题称之为“整数溢出问题”。

整数溢出问题
这里有一篇专门讨论这个问题的文章,推荐阅读:整数溢出

对于其它语言,整数溢出是必须正视的,但是,在 Python 里面,看官就无忧愁了,原因就是 Python 为我们解决了这个问题,请阅读下面的拙文:大整数相乘

ok!看官可以在 IDE 中实验一下大整数相乘。


>>> 123456789870987654321122343445567678890098876*1233455667789990099876543332387665443345566
152278477193527562870044352587576277277562328362032444339019158937017801601677976183816L


看官是幸运的,Python 解忧愁,所以,选择学习 Python 就是珍惜光阴了。

上面计算结果的数字最后有一个 L,就表示这个数是一个长整数,不过,看官不用管这点,反正是 Python 为我们搞定了。

在结束本节之前,有两个符号需要看官牢记(不记住也没关系,可以随时 google,只不过记住后使用更方便)

整数,用 int 表示,来自单词:integer
浮点数,用 float 表示,就是单词:float
可以用一个命令:type(object)来检测一个数是什么类型。


>>> type(4)
<type &#39;int&#39;>  #4 是 int,整数
>>> type(5.0)
<type &#39;float&#39;> #5.0 是 float,浮点数
type(988776544222112233445566778899887766554433221133344455566677788998776543222344556678)
<type &#39;long&#39;>  # 是长整数,也是一个整数


除法
除法啰嗦,不仅是 Python。

整数除以整数
进入 Python 交互模式之后(以后在本教程中,可能不再重复这类的叙述,只要看到>>>,就说明是在交互模式下),练习下面的运算:

>>> 2 / 5
0
>>> 2.0 / 5
0.4
>>> 2 / 5.0
0.4
>>> 2.0 / 5.0
0.4


看到没有?麻烦出来了(这是在 Python2.x 中),按照数学运算,以上四个运算结果都应该是 0.4。但我们看到的后三个符合,第一个居然结果是 0。why?

因为,在 Python(严格说是 Python2.x 中,Python3 会有所变化)里面有一个规定,像 2/5 中的除法这样,是要取整(就是去掉小数,但不是四舍五入)。2 除以 5,商是 0(整数),余数是 2(整数)。那么如果用这种形式:2/5,计算结果就是商那个整数。或者可以理解为:整数除以整数,结果是整数(商)。

比如:

>>> 5 / 2
2
>>> 7 / 2
3
>>> 8 / 2
4


注意:得到是商(整数),而不是得到含有小数位的结果再通过“四舍五入”取整。例如:5/2,得到的是商 2,余数 1,最终5 / 2 = 2。并不是对 2.5 进行四舍五入。

浮点数与整数相除
这个标题和上面的标题格式不一样,上面的标题是“整数除以整数”,如果按照风格一贯制的要求,本节标题应该是“浮点数除以整数”,但没有,现在是“浮点数与整数相除”,其含义是:

假设:x 除以 y。其中 x 可能是整数,也可能是浮点数;y 可能是整数,也可能是浮点数。
出结论之前,还是先做实验:

>>> 9.0 / 2
4.5
>>> 9 / 2.0
4.5
>>> 9.0 / 2.0
4.5

>>> 8.0 / 2
4.0
>>> 8 / 2.0
4.0
>>> 8.0 / 2.0
4.0


归纳,得到规律:不管是被除数还是除数,只要有一个数是浮点数,结果就是浮点数。所以,如果相除的结果有余数,也不会像前面一样了,而是要返回一个浮点数,这就跟在数学上学习的结果一样了。


>>> 10.0 / 3
3.3333333333333335


这个是不是就有点搞怪了,按照数学知识,应该是 3.33333...,后面是 3 的循环了。那么你的计算机就停不下来了,满屏都是 3。为了避免这个,Python 武断终结了循环,但是,可悲的是没有按照“四舍五入”的原则终止。当然,还会有更奇葩的出现:


>>> 0.1 + 0.2
0.30000000000000004
>>> 0.1 + 0.1 - 0.2
0.0
>>> 0.1 + 0.1 + 0.1 - 0.3
5.551115123125783e-17
>>> 0.1 + 0.1 + 0.1 - 0.2
0.10000000000000003


越来越糊涂了,为什么 computer 姑娘在计算这么简单的问题上,如此糊涂了呢?不是 computer 姑娘糊涂,她依然冰雪聪明。原因在于十进制和二进制的转换上,computer 姑娘用的是二进制进行计算,上面的例子中,我们输入的是十进制,她就要把十进制的数转化为二进制,然后再计算。但是,在转化中,浮点数转化为二进制,就出问题了。

例如十进制的 0.1,转化为二进制是:0.0001100110011001100110011001100110011001100110011...

也就是说,转化为二进制后,不会精确等于十进制的 0.1。同时,计算机存储的位数是有限制的,所以,就出现上述现象了。

这种问题不仅仅是 Python 中有,所有支持浮点数运算的编程语言都会遇到,它不是 Python 的 bug。

明白了问题原因,怎么解决呢?就 Python 的浮点数运算而言,大多数机器上每次计算误差不超过 2**53 分之一。对于大多数任务这已经足够了,但是要在心中记住这不是十进制算法,每个浮点数计算可能会带来一个新的舍入错误。

一般情况下,只要简单地将最终显示的结果用“四舍五入”到所期望的十进制位数,就会得到期望的最终结果。

对于需要非常精确的情况,可以使用 decimal 模块,它实现的十进制运算适合会计方面的应用和高精度要求的应用。另外 fractions 模块支持另外一种形式的运算,它实现的运算基于有理数(因此像 1/3 这样的数字可以精确地表示)。最高要求则可是使用由 SciPy 提供的 Numerical Python 包和其它用于数学和统计学的包。列出这些东西,仅仅是让看官能明白,解决问题的方式很多,后面会用这些中的某些方式解决上述问题。

关于无限循环小数问题,我有一个链接推荐给诸位,它不是想象的那么简单呀。请阅读:维基百科的词条:0.999...,会不会有深入体会呢?

补充一个资料,供有兴趣的朋友阅读:浮点数算法:争议和限制
Python 总会要提供多种解决问题的方案的,这是她的风格。

引用模块解决除法--启用轮子
Python 之所以受人欢迎,一个很重重要的原因,就是轮子多。这是比喻啦。就好比你要跑的快,怎么办?光天天练习跑步是不行滴,要用轮子。找辆自行车,就快了很多。还嫌不够快,再换电瓶车,再换汽车,再换高铁...反正你可以选择的很多。但是,这些让你跑的快的东西,多数不是你自己造的,是别人造好了,你来用。甚至两条腿也是感谢父母恩赐。正是因为轮子多,可以选择的多,就可以以各种不同速度享受了。

轮子是人类伟大的发明。

Python 就是这样,有各种轮子,我们只需要用。只不过那些轮子在 Python 里面的名字不叫自行车、汽车,叫做“模块”,有人承接别的语言的名称,叫做“类库”、“类”。不管叫什么名字吧。就是别人造好的东西我们拿过来使用。

怎么用?可以通过两种形式用:

形式 1:import module-name。import 后面跟空格,然后是模块名称,例如:import os
形式 2:from module1 import module11。module1 是一个大模块,里面还有子模块 module11,只想用 module11,就这么写了。
不啰嗦了,实验一个:


>>> from future import pision
>>> 5 / 2
2.5
>>> 9 / 2
4.5
>>> 9.0 / 2
4.5
>>> 9 / 2.0
4.5


注意了,引用了一个模块之后,再做除法,就不管什么情况,都是得到浮点数的结果了。

这就是轮子的力量。

余数
前面计算 5/2 的时候,商是 2,余数是 1

余数怎么得到?在 Python 中(其实大多数语言也都是),用%符号来取得两个数相除的余数.

实验下面的操作:


>>> 5 % 2
1
>>> 6%4
2
>>> 5.0%2
1.0


符号:%,就是要得到两个数(可以是整数,也可以是浮点数)相除的余数。

前面说 Python 有很多人见人爱的轮子(模块),她还有丰富的内建函数,也会帮我们做不少事情。例如函数 pmod()


>>> pmod(5,2) # 表示 5 除以 2,返回了商和余数
(2, 1)
>>> pmod(9,2)
(4, 1)
>>> pmod(5.0,2)
(2.0, 1.0)


四舍五入
最后一个了,一定要坚持,今天的确有点啰嗦了。要实现四舍五入,很简单,就是内建函数:round()

动手试试:


>>> round(1.234567,2)
1.23
>>> round(1.234567,3)
1.235
>>> round(10.0/3,4)
3.3333



以上がPython プログラミングにおける基本的な数学的計算方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明:
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。