前書き
私は最近仕事で、トラフィック、ステータスコード統計、TOP IP、URL、UA、リファラーなどの CDN ログに基づいて一部のデータをフィルタリングする必要があることに遭遇しました。従来はbashシェルを使用して実装していましたが、ログ容量が大きく、ログファイル数がギガバイト、行数が数百億に達する場合、シェルでの処理では不十分となり処理が困難になります。時間が長すぎます。そこで、データ処理ライブラリであるPython pandasの使い方を勉強しました。 1,000 万行のログは約 40 秒で処理されます。
Code
#!/usr/bin/python # -*- coding: utf-8 -*- # sudo pip install pandas __author__ = 'Loya Chen' import sys import pandas as pd from collections import OrderedDict """ Description: This script is used to analyse qiniu cdn log. ================================================================================ 日志格式 IP - ResponseTime [time +0800] "Method URL HTTP/1.1" code size "referer" "UA" ================================================================================ 日志示例 [0] [1][2] [3] [4] [5] 101.226.66.179 - 68 [16/Nov/2016:04:36:40 +0800] "GET http://www.php.cn/ -" [6] [7] [8] [9] 200 502 "-" "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0)" ================================================================================ """ if len(sys.argv) != 2: print('Usage:', sys.argv[0], 'file_of_log') exit() else: log_file = sys.argv[1] # 需统计字段对应的日志位置 ip = 0 url = 5 status_code = 6 size = 7 referer = 8 ua = 9 # 将日志读入DataFrame reader = pd.read_table(log_file, sep=' ', names=[i for i in range(10)], iterator=True) loop = True chunkSize = 10000000 chunks = [] while loop: try: chunk = reader.get_chunk(chunkSize) chunks.append(chunk) except StopIteration: #Iteration is stopped. loop = False df = pd.concat(chunks, ignore_index=True) byte_sum = df[size].sum() #流量统计 top_status_code = pd.DataFrame(df[6].value_counts()) #状态码统计 top_ip = df[ip].value_counts().head(10) #TOP IP top_referer = df[referer].value_counts().head(10) #TOP Referer top_ua = df[ua].value_counts().head(10) #TOP User-Agent top_status_code['persent'] = pd.DataFrame(top_status_code/top_status_code.sum()*100) top_url = df[url].value_counts().head(10) #TOP URL top_url_byte = df[[url,size]].groupby(url).sum().apply(lambda x:x.astype(float)/1024/1024) \ .round(decimals = 3).sort_values(by=[size], ascending=False)[size].head(10) #请求流量最大的URL top_ip_byte = df[[ip,size]].groupby(ip).sum().apply(lambda x:x.astype(float)/1024/1024) \ .round(decimals = 3).sort_values(by=[size], ascending=False)[size].head(10) #请求流量最多的IP # 将结果有序存入字典 result = OrderedDict([("流量总计[单位:GB]:" , byte_sum/1024/1024/1024), ("状态码统计[次数|百分比]:" , top_status_code), ("IP TOP 10:" , top_ip), ("Referer TOP 10:" , top_referer), ("UA TOP 10:" , top_ua), ("URL TOP 10:" , top_url), ("请求流量最大的URL TOP 10[单位:MB]:" , top_url_byte), ("请求流量最大的IP TOP 10[单位:MB]:" , top_ip_byte) ]) # 输出结果 for k,v in result.items(): print(k) print(v) print('='*80)
pandasの勉強メモ
PandasにはSeriesとDataframeという2つの基本的なデータ構造があります。 Series は 1 次元配列に似たオブジェクトで、データとインデックスのセットで構成されます。データフレームは、行インデックスと列インデックスの両方を持つ表形式のデータ構造です。
from pandas import Series, DataFrame import pandas as pd
Series
In [1]: obj = Series([4, 7, -5, 3]) In [2]: obj Out[2]: 0 4 1 7 2 -5 3 3
Series の文字列表現は次のとおりです。インデックスが左側にあり、値が右側にあります。インデックスが指定されていない場合は、0 ~ N-1 (N はデータの長さ) の範囲の整数インデックスが自動的に作成されます。その配列表現とインデックス オブジェクトは、シリーズの値とインデックス プロパティを通じて取得できます:
In [3]: obj.values Out[3]: array([ 4, 7, -5, 3]) In [4]: obj.index Out[4]: RangeIndex(start=0, stop=4, step=1)
通常、インデックスはシリーズの作成時に指定されます:
In [5]: obj2 = Series([4, 7, -5, 3], index=['d', 'b', 'a', 'c']) In [6]: obj2 Out[6]: d 4 b 7 a -5 c 3
シリーズ内の単一または値のグループを取得しますインデックスを使用して:
In [7]: obj2['a'] Out[7]: -5 In [8]: obj2[['c','d']] Out[8]: c 3 d 4
Sort
In [9]: obj2.sort_index() Out[9]: a -5 b 7 c 3 d 4 In [10]: obj2.sort_values() Out[10]: a -5 c 3 d 4 b 7
Filter 操作
In [11]: obj2[obj2 > 0] Out[11]: d 4 b 7 c 3 In [12]: obj2 * 2 Out[12]: d 8 b 14 a -10 c 6
Members
In [13]: 'b' in obj2 Out[13]: True In [14]: 'e' in obj2 Out[14]: False
Dictionary からシリーズを作成
In [15]: sdata = {'Shanghai':35000, 'Beijing':40000, 'Nanjing':26000, 'Hangzhou':30000} In [16]: obj3 = Series(sdata) In [17]: obj3 Out[17]: Beijing 40000 Hangzhou 30000 Nanjing 26000 Shanghai 35000
辞書が 1 つだけ渡された場合、結果として得られる Series のインデックスは、元の辞書のキーになります (順序付けされています)。配置)
In [18]: states = ['Beijing', 'Hangzhou', 'Shanghai', 'Suzhou'] In [19]: obj4 = Series(sdata, index=states) In [20]: obj4 Out[20]: Beijing 40000.0 Hangzhou 30000.0 Shanghai 35000.0 Suzhou NaN
indexを指定するとsdataが続きます州のindexに一致する3つの値を見つけて応答位置に配置しますが、「蘇州」に対応するsdataの値が見つからないため、結果はNaNになります(数値)、pandas で欠損値または NA 値を表すために使用されます
pandas の isnull および notnull 関数を使用して欠損データを検出できます:
In [21]: pd.isnull(obj4) Out[21]: Beijing False Hangzhou False Shanghai False Suzhou True In [22]: pd.notnull(obj4) Out[22]: Beijing True Hangzhou True Shanghai True Suzhou False
Series にも同様のインスタンス メソッドがあります
In [23]: obj4.isnull() Out[23]: Beijing False Hangzhou False Shanghai False Suzhou True
Series の重要な機能は次のとおりです。データ操作中にデータを異なるインデックスに自動的に配置します
In [24]: obj3 Out[24]: Beijing 40000 Hangzhou 30000 Nanjing 26000 Shanghai 35000 In [25]: obj4 Out[25]: Beijing 40000.0 Hangzhou 30000.0 Shanghai 35000.0 Suzhou NaN In [26]: obj3 + obj4 Out[26]: Beijing 80000.0 Hangzhou 60000.0 Nanjing NaN Shanghai 70000.0 Suzhou NaN
Series のインデックスは、コピーすることでその場で変更できます
In [27]: obj.index = ['Bob', 'Steve', 'Jeff', 'Ryan'] In [28]: obj Out[28]: Bob 4 Steve 7 Jeff -5 Ryan 3
DataFrame
pandas はファイルを読み取ります
In [29]: df = pd.read_table('pandas_test.txt',sep=' ', names=['name', 'age']) In [30]: df Out[30]: name age 0 Bob 26 1 Loya 22 2 Denny 20 3 Mars 25
DataFrame の列選択
df[name]rreee
DataFrame の行選択
In [31]: df['name'] Out[31]: 0 Bob 1 Loya 2 Denny 3 Mars Name: name, dtype: object
df.iloc[0,:] #第一个参数是第几行,第二个参数是列。这里指第0行全部列 df.iloc[:,0] #全部行,第0列
要素の取得は iloc 経由で行うことができ、より高速です 方法は iat です
In [32]: df.iloc[0,:] Out[32]: name Bob age 26 Name: 0, dtype: object In [33]: df.iloc[:,0] Out[33]: 0 Bob 1 Loya 2 Denny 3 Mars Name: name, dtype: object
DataFrame ブロック選択
In [34]: df.iloc[1,1] Out[34]: 22 In [35]: df.iat[1,1] Out[35]: 22
条件に基づいて行をフィルタリングします
行をフィルタリングするには角括弧内に判定条件を追加します。条件は True または False を返す必要があります
In [36]: df.loc[1:2,['name','age']] Out[36]: name age 1 Loya 22 2 Denny 20
列を追加
In [37]: df[(df.index >= 1) & (df.index <= 3)] Out[37]: name age city 1 Loya 22 Shanghai 2 Denny 20 Hangzhou 3 Mars 25 Nanjing In [38]: df[df['age'] > 22] Out[38]: name age city 0 Bob 26 Beijing 3 Mars 25 Nanjing
並べ替え
指定どおり 列を並べ替え
In [39]: df['city'] = ['Beijing', 'Shanghai', 'Hangzhou', 'Nanjing'] In [40]: df Out[40]: name age city 0 Bob 26 Beijing 1 Loya 22 Shanghai 2 Denny 20 Hangzhou 3 Mars 25 Nanjing
In [41]: df.sort_values(by='age') Out[41]: name age city 2 Denny 20 Hangzhou 1 Loya 22 Shanghai 3 Mars 25 Nanjing 0 Bob 26 Beijingrree
# 引入numpy 构建 DataFrame import numpy as np
表示
In [42]: df = pd.DataFrame(np.arange(8).reshape((2, 4)), index=['three', 'one'], columns=['d', 'a', 'b', 'c']) In [43]: df Out[43]: d a b c three 0 1 2 3 one 4 5 6 7
転置
# 以索引排序 In [44]: df.sort_index() Out[44]: d a b c one 4 5 6 7 three 0 1 2 3 In [45]: df.sort_index(axis=1) Out[45]: a b c d three 1 2 3 0 one 5 6 7 4 # 降序 In [46]: df.sort_index(axis=1, ascending=False) Out[46]: d c b a three 0 3 2 1 one 4 7 6 5
isinを使用
# 查看表头5行 df.head(5) # 查看表末5行 df.tail(5) # 查看列的名字 In [47]: df.columns Out[47]: Index(['name', 'age', 'city'], dtype='object') # 查看表格当前的值 In [48]: df.values Out[48]: array([['Bob', 26, 'Beijing'], ['Loya', 22, 'Shanghai'], ['Denny', 20, 'Hangzhou'], ['Mars', 25, 'Nanjing']], dtype=object)
操作:
df.T Out[49]: 0 1 2 3 name Bob Loya Denny Mars age 26 22 20 25 city Beijing Shanghai Hangzhou Nanjing
In [50]: df2 = df.copy() In [51]: df2[df2['city'].isin(['Shanghai','Nanjing'])] Out[52]: name age city 1 Loya 22 Shanghai 3 Mars 25 Nanjing
グループ
グループとは次のステップを指します:
いくつかの基準に基づいてデータをグループに分割します
🎙 ライブラリによる cdn ログの分析に関する関連記事については、PHP 中国語 Web サイトに注目してください。 - 関連記事:
PythonでPandasを使用してCSVファイルを読み取り、MySQLに書き込む方法
Pandasを使用したPythonデータ分析のための実際のIPリクエストの詳細な説明
Pythonのpandasフレームワークを使用したチュートリアルExcel ファイル内のデータを操作する

Pythonリストスライスの基本的な構文はリストです[start:stop:step]。 1.STARTは最初の要素インデックス、2。ストップは除外された最初の要素インデックスであり、3.ステップは要素間のステップサイズを決定します。スライスは、データを抽出するためだけでなく、リストを変更および反転させるためにも使用されます。

ListSoutPerformArraysIn:1)ダイナミシジョンアンドフレーケンティオン/削除、2)ストーリングヘテロゼンダタ、および3)メモリ効率の装飾、ButmayhaveslightPerformancostsinceNASOPERATIONS。

toconvertapythonarraytoalist、usetheList()constructororageneratorexpression.1)importhearraymoduleandcreateanarray.2)useList(arr)または[xforxinarr] toconvertoalistは、largedatatessを変えることを伴うものです。

choosearraysoverlistsinperbetterperformance andmemoryeficiencyspecificscenarios.1)largeNumericaldatasets:Araysreducememoryusage.2)パフォーマンス - クリティカル操作:ArraysOfferSpeedBoostsfortsfortsclikeappendedoring.3)タイプリー:Arrayesenforc

Pythonでは、ループに使用し、列挙し、包括的なリストを通過することができます。 Javaでは、従来のループを使用し、ループを強化してアレイを通過することができます。 1。Pythonリストトラバーサル方法は、ループ、列挙、およびリスト理解のためのものです。 2。Javaアレイトラバーサル法には、従来のループとループ用の強化が含まれます。

この記事では、バージョン3.10で導入されたPythonの新しい「マッチ」ステートメントについて説明します。これは、他の言語のスイッチステートメントに相当するものです。コードの読みやすさを向上させ、従来のif-elif-elよりもパフォーマンスの利点を提供します

Python 3.11の例外グループは、複数の例外を同時に処理することで、同時シナリオと複雑な操作でエラー管理を改善します。

Pythonの関数注釈は、タイプチェック、ドキュメント、およびIDEサポートの関数にメタデータを追加します。それらはコードの読みやすさ、メンテナンスを強化し、API開発、データサイエンス、ライブラリの作成において重要です。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

PhpStorm Mac バージョン
最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SecLists
SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

ホットトピック









