検索
ホームページバックエンド開発Python チュートリアルPythonはROC曲線を描いてAUC値を計算します

はじめに

ROC (受信者動作特性) 曲線と AUC は、バイナリ分類器の品質を評価するためによく使用されます。この記事では、まず ROC と AUC について簡単に紹介し、次に例を使用して Python で ROC 曲線を作成し、AUC を計算する方法を示します。

AUC の概要

AUC (Area Under Curve) は、機械学習二項分類モデルで非常に一般的に使用される評価指標であり、F1 スコアと比較してプロジェクトの不均衡に対する許容度が高く、現在一般的です。通常、機械学習ライブラリ (scikit-learn など) にはこの指標の計算が統合されていますが、モデルが別個であるか、独自に作成されている場合があります。この場合、トレーニング モデルの品質を評価したい場合は、 AUC 計算を自分で行うモジュールですが、この記事で情報を検索したときに libsvm-tools に非常にわかりやすい auc 計算があることがわかったので、今後の使用のために選択しました。

AUCの計算

AUCの計算は以下の3つのステップに分かれています:

1. 計算データの準備 モデルのトレーニング中にトレーニングセットのみがある場合、一般的にクロスバリデーションを使用して計算されます。評価セット (評価) は通常、予測スコアとそのターゲット カテゴリを必要とします (予測カテゴリではなくターゲット カテゴリであることに注意してください)

2.閾値に従って、水平 (X: 偽陽性率) と垂直 (Y: 真陽性率) の点

3. 座標点を曲線に接続した後、曲線の下の面積、つまり AUC の値を計算します。

Pythonコードを直接入力します

#! -*- coding=utf-8 -*-
import pylab as pl
from math import log,exp,sqrt


evaluate_result="you file path"
db = [] #[score,nonclk,clk]
pos, neg = 0, 0 
with open(evaluate_result,'r') as fs:
 for line in fs:
 nonclk,clk,score = line.strip().split('\t')
 nonclk = int(nonclk)
 clk = int(clk)
 score = float(score)
 db.append([score,nonclk,clk])
 pos += clk
 neg += nonclk
 
 

db = sorted(db, key=lambda x:x[0], reverse=True)

#计算ROC坐标点
xy_arr = []
tp, fp = 0., 0.  
for i in range(len(db)):
 tp += db[i][2]
 fp += db[i][1]
 xy_arr.append([fp/neg,tp/pos])

#计算曲线下面积
auc = 0.  
prev_x = 0
for x,y in xy_arr:
 if x != prev_x:
 auc += (x - prev_x) * y
 prev_x = x

print "the auc is %s."%auc

x = [_v[0] for _v in xy_arr]
y = [_v[1] for _v in xy_arr]
pl.title("ROC curve of %s (AUC = %.4f)" % ('svm',auc))
pl.xlabel("False Positive Rate")
pl.ylabel("True Positive Rate")
pl.plot(x, y)# use pylab to plot x and y
pl.show()# show the plot on the screen

入力データセットはSVM予測結果を参照できます

形式は次のとおりです:

nonclk \t clk \t score

その中には:
1. nonclick: クリックされていないデータ。ネガティブサンプルの数とみなすことができます

2. clk: クリック数、ポジティブサンプルの数とみなすことができます

3. スコア: 予測スコア、このスコアをグループとして使用して、陽性サンプルと陰性サンプルの事前統計を実行すると、実行中の AUC 計算の量を削減できます

結果は次のようになります:

PythonはROC曲線を描いてAUC値を計算します

pylab がマシンにインストールされていない場合は、直接注釈を付けることができます依存関係と描画部分


上記のコード:

1. 計算できるのは 2 つのカテゴリの結果のみです ( 2 つのカテゴリのラベルについては、気軽に扱うことができます) )

2. 上記のコードの各スコアにはしきい値があります。実際、この効率は非常に低く、サンプルをサンプリングするか、水平軸座標を計算するときに同等の計算を実行できます

Python 描画 ROC に関連するその他の記事はこちらです。曲線と AUC 値の計算については、PHP 中国語 Web サイトに注意してください。


声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
Python:ゲーム、GUIなどPython:ゲーム、GUIなどApr 13, 2025 am 12:14 AM

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

Python vs. C:比較されたアプリケーションとユースケースPython vs. C:比較されたアプリケーションとユースケースApr 12, 2025 am 12:01 AM

Pythonは、データサイエンス、Web開発、自動化タスクに適していますが、Cはシステムプログラミング、ゲーム開発、組み込みシステムに適しています。 Pythonは、そのシンプルさと強力なエコシステムで知られていますが、Cは高性能および基礎となる制御機能で知られています。

2時間のPython計画:現実的なアプローチ2時間のPython計画:現実的なアプローチApr 11, 2025 am 12:04 AM

2時間以内にPythonの基本的なプログラミングの概念とスキルを学ぶことができます。 1.変数とデータ型、2。マスターコントロールフロー(条件付きステートメントとループ)、3。機能の定義と使用を理解する4。

Python:主要なアプリケーションの調査Python:主要なアプリケーションの調査Apr 10, 2025 am 09:41 AM

Pythonは、Web開発、データサイエンス、機械学習、自動化、スクリプトの分野で広く使用されています。 1)Web開発では、DjangoおよびFlask Frameworksが開発プロセスを簡素化します。 2)データサイエンスと機械学習の分野では、Numpy、Pandas、Scikit-Learn、Tensorflowライブラリが強力なサポートを提供します。 3)自動化とスクリプトの観点から、Pythonは自動テストやシステム管理などのタスクに適しています。

2時間でどのくらいのPythonを学ぶことができますか?2時間でどのくらいのPythonを学ぶことができますか?Apr 09, 2025 pm 04:33 PM

2時間以内にPythonの基本を学ぶことができます。 1。変数とデータ型を学習します。2。ステートメントやループの場合などのマスター制御構造、3。関数の定義と使用を理解します。これらは、簡単なPythonプログラムの作成を開始するのに役立ちます。

プロジェクトの基本と問題駆動型の方法で10時間以内にコンピューター初心者プログラミングの基本を教える方法は?プロジェクトの基本と問題駆動型の方法で10時間以内にコンピューター初心者プログラミングの基本を教える方法は?Apr 02, 2025 am 07:18 AM

10時間以内にコンピューター初心者プログラミングの基本を教える方法は?コンピューター初心者にプログラミングの知識を教えるのに10時間しかない場合、何を教えることを選びますか...

中間の読書にどこでもfiddlerを使用するときにブラウザによって検出されないようにするにはどうすればよいですか?中間の読書にどこでもfiddlerを使用するときにブラウザによって検出されないようにするにはどうすればよいですか?Apr 02, 2025 am 07:15 AM

fiddlereveryversings for the-middleの測定値を使用するときに検出されないようにする方法

Python 3.6にピクルスファイルをロードするときに「__Builtin__」モジュールが見つからない場合はどうすればよいですか?Python 3.6にピクルスファイルをロードするときに「__Builtin__」モジュールが見つからない場合はどうすればよいですか?Apr 02, 2025 am 07:12 AM

Python 3.6のピクルスファイルのロードレポートエラー:modulenotFounderror:nomodulenamed ...

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

MantisBT

MantisBT

Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強力な PHP 統合開発環境

EditPlus 中国語クラック版

EditPlus 中国語クラック版

サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境