検索
ホームページバックエンド開発Python チュートリアルNumPy を深く理解するための簡潔なチュートリアル --- 配列 3 (組み合わせ)

前两篇文章对NumPy数组做了基本的介绍,本篇文章对NumPy数组进行较深入的探讨。首先介绍自定义类型的数组,接着数组的组合,最后介绍数组复制方面的问题。

自定义结构数组

通过NumPy也可以定义像C语言那样的结构类型。在NumPy中定义结构的方法如下:

定义结构类型名称;定义字段名称,标明字段数据类型。

student= dtype({'names':['name', 'age', 'weight'], 'formats':['S32', 'i','f']}, align = True)

这里student是自定义结构类型的名称,使用dtype函数创建,在第一个参数中,'names'和'formats'不能改变,names中列出的是结构中字段名称,formats中列出的是对应字段的数据类型。S32表示32字节长度的字符串,i表示32位的整数,f表示32位长度的浮点数。最后一个参数为True时,表示要求进行内存对齐。

字段中使用NumPy的字符编码来表示数据类型。更详细的数据类型见下表。


数据类型 字符编码
整数 i
无符号整数 u
单精度浮点数 f
双精度浮点数 d
布尔值 b
复数 D
字符串 S
Unicode U
Void V

在定义好结构类型之后,就可以定义以该类型为元素的数组了:

a= array([(“Zhang”, 32, 65.5), (“Wang”, 24, 55.2)], dtype =student)

除了在每个元素中依次列出对应字段的数据外,还需要在array函数中最后一个参数指定其所对应的数据类型。

组合函数

这里介绍以不同的方式组合函数。首先创建两个数组:

>>> a = arange(9).reshape(3,3) 
>>> a 
array([[0, 1, 2], 
   [3, 4, 5], 
   [6, 7, 8]]) 
>>> b = 2 * a 
>>> b 
array([[ 0, 2, 4], 
  [ 6, 8, 10], 
  [12, 14, 16]])

水平组合

>>> hstack((a, b)) 
array([[ 0, 1, 2, 0, 2, 4], 
  [ 3, 4, 5, 6, 8, 10], 
  [ 6, 7, 8, 12, 14, 16]])

也可通过concatenate函数并指定相应的轴来获得这一效果:

>>> concatenate((a, b), axis=1) 
array([[ 0, 1, 2, 0, 2, 4], 
  [ 3, 4, 5, 6, 8, 10], 
  [ 6, 7, 8, 12, 14, 16]])

垂直组合

>>> vstack((a, b)) 
array([[ 0, 1, 2], 
  [ 3, 4, 5], 
  [ 6, 7, 8], 
  [ 0, 2, 4], 
  [ 6, 8, 10], 
  [12, 14, 16]])

同样,可通过concatenate函数,并指定相应的轴来获得这一效果。

>>> concatenate((a, b), axis=0) 
array([[ 0, 1, 2], 
  [ 3, 4, 5], 
  [ 6, 7, 8], 
  [ 0, 2, 4], 
  [ 6, 8, 10], 
  [12, 14, 16]])

深度组合

另外,还有深度方面的组合函数dstack。顾名思义,就是在数组的第三个轴(即深度)上组合。如下:

>>> dstack((a, b)) 
array([[[ 0, 0], 
  [ 1, 2], 
  [ 2, 4]], 
 
  [[ 3, 6], 
  [ 4, 8], 
  [ 5, 10]], 
 
  [[ 6, 12], 
  [ 7, 14], 
  [ 8, 16]]])

仔细观察,发现对应的元素都组合成一个新的列表,该列表作为新的数组的元素。

行组合

行组合可将多个一维数组作为新数组的每一行进行组合:

>>> one = arange(2) 
>>> one 
array([0, 1]) 
>>> two = one + 2 
>>> two 
array([2, 3]) 
>>> row_stack((one, two)) 
array([[0, 1], 
  [2, 3]])

对于2维数组,其作用就像垂直组合一样。

列组合

列组合的效果应该很清楚了。如下:

>>> column_stack((oned, twiceoned)) 
array([[0, 2], 
  [1, 3]])

对于2维数组,其作用就像水平组合一样。

分割数组

在NumPy中,分割数组的函数有hsplit、vsplit、dsplit和split。可将数组分割成相同大小的子数组,或指定原数组分割的位置。

水平分割

>>> a = arange(9).reshape(3,3) 
>>> a 
array([[0, 1, 2], 
  [3, 4, 5], 
  [6, 7, 8]]) 
>>> hsplit(a, 3) 
[array([[0], 
  [3], 
  [6]]), 
 array([[1], 
  [4], 
  [7]]), 
 array([[2], 
  [5], 
  [8]])]

也调用split函数并指定轴为1来获得这样的效果:

split(a, 3, axis=1)

垂直分割

垂直分割是沿着垂直的轴切分数组:

>>> vsplit(a, 3) 
>>> [array([[0, 1, 2]]), array([[3, 4, 5]]), array([[6, 7, 8]])]

同样,也可通过solit函数并指定轴为1来获得这样的效果:

>>> split(a, 3, axis=0)

面向深度的分割

dsplit函数使用的是面向深度的分割方式:

>>> c = arange(27).reshape(3, 3, 3) 
>>> c 
array([[[ 0, 1, 2], 
  [ 3, 4, 5], 
  [ 6, 7, 8]], 
 
  [[ 9, 10, 11], 
  [12, 13, 14], 
  [15, 16, 17]], 
 
  [[18, 19, 20], 
  [21, 22, 23], 
  [24, 25, 26]]]) 
>>> dsplit(c, 3) 
[array([[[ 0], 
  [ 3], 
  [ 6]], 
 
  [[ 9], 
  [12], 
  [15]], 
 
  [[18], 
  [21], 
  [24]]]), 
 array([[[ 1], 
  [ 4], 
  [ 7]], 
 
  [[10], 
  [13], 
  [16]], 
 
  [[19], 
  [22], 
  [25]]]), 
 array([[[ 2], 
  [ 5], 
  [ 8]], 
 
  [[11], 
  [14], 
  [17]], 
 
  [[20], 
  [23], 
  [26]]])]

复制和镜像(View)

当运算和处理数组时,它们的数据有时被拷贝到新的数组有时不是。这通常是新手的困惑之源。这有三种情况:

完全不复制

简单的赋值,而不复制数组对象或它们的数据。

>>> a = arange(12) 
>>> b = a  #不创建新对象 
>>> b is a   # a和b是同一个数组对象的两个名字 
True 
>>> b.shape = 3,4 #也改变了a的形状 
>>> a.shape 
(3, 4) 
    Python 传递不定对象作为参考4,所以函数调用不拷贝数组。
 >>> def f(x): 
...  print id(x) 
... 
>>> id(a)  #id是一个对象的唯一标识 
148293216 
>>> f(a) 
148293216

视图(view)和浅复制

不同的数组对象分享同一个数据。视图方法创造一个新的数组对象指向同一数据。

>>> c = a.view() 
>>> c is a 
False 
>>> c.base is a  #c是a持有数据的镜像 
True 
>>> c.flags.owndata 
False 
>>> 
>>> c.shape = 2,6 # a的形状没变 
>>> a.shape 
(3, 4) 
>>> c[0,4] = 1234  #a的数据改变了 
>>> a 
array([[ 0, 1, 2, 3], 
  [1234, 5, 6, 7], 
  [ 8, 9, 10, 11]])

切片数组返回它的一个视图:

>>> s = a[ : , 1:3]  # 获得每一行1,2处的元素 
>>> s[:] = 10   # s[:] 是s的镜像。注意区别s=10 and s[:]=10 
>>> a 
array([[ 0, 10, 10, 3], 
  [1234, 10, 10, 7], 
  [ 8, 10, 10, 11]])

深复制

这个复制方法完全复制数组和它的数据。

 >>> d = a.copy()  #创建了一个含有新数据的新数组对象 
>>> d is a 
False 
>>> d.base is a  #d和a现在没有任何关系 
False 
>>> d[0,0] = 9999 
>>> a 
array([[ 0, 10, 10, 3], 
  [1234, 10, 10, 7], 
  [ 8, 10, 10, 11]])

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持PHP中文网。

更多深入理解NumPy简明教程---数组3(组合)相关文章请关注PHP中文网!


声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
Pythonの主な目的:柔軟性と使いやすさPythonの主な目的:柔軟性と使いやすさApr 17, 2025 am 12:14 AM

Pythonの柔軟性は、マルチパラダイムサポートと動的タイプシステムに反映されていますが、使いやすさはシンプルな構文とリッチ標準ライブラリに由来しています。 1。柔軟性:オブジェクト指向、機能的および手続き的プログラミングをサポートし、動的タイプシステムは開発効率を向上させます。 2。使いやすさ:文法は自然言語に近く、標準的なライブラリは幅広い機能をカバーし、開発プロセスを簡素化します。

Python:汎用性の高いプログラミングの力Python:汎用性の高いプログラミングの力Apr 17, 2025 am 12:09 AM

Pythonは、初心者から上級開発者までのすべてのニーズに適した、そのシンプルさとパワーに非常に好まれています。その汎用性は、次のことに反映されています。1)学習と使用が簡単、シンプルな構文。 2)Numpy、Pandasなどの豊富なライブラリとフレームワーク。 3)さまざまなオペレーティングシステムで実行できるクロスプラットフォームサポート。 4)作業効率を向上させるためのスクリプトおよび自動化タスクに適しています。

1日2時間でPythonを学ぶ:実用的なガイド1日2時間でPythonを学ぶ:実用的なガイドApr 17, 2025 am 12:05 AM

はい、1日2時間でPythonを学びます。 1.合理的な学習計画を作成します。2。適切な学習リソースを選択します。3。実践を通じて学んだ知識を統合します。これらの手順は、短時間でPythonをマスターするのに役立ちます。

Python vs. C:開発者の長所と短所Python vs. C:開発者の長所と短所Apr 17, 2025 am 12:04 AM

Pythonは迅速な開発とデータ処理に適していますが、Cは高性能および基礎となる制御に適しています。 1)Pythonは、簡潔な構文を備えた使いやすく、データサイエンスやWeb開発に適しています。 2)Cは高性能で正確な制御を持ち、ゲームやシステムのプログラミングでよく使用されます。

Python:時間のコミットメントと学習ペースPython:時間のコミットメントと学習ペースApr 17, 2025 am 12:03 AM

Pythonを学ぶのに必要な時間は、人によって異なり、主に以前のプログラミングの経験、学習の動機付け、学習リソースと方法、学習リズムの影響を受けます。現実的な学習目標を設定し、実用的なプロジェクトを通じて最善を尽くします。

Python:自動化、スクリプト、およびタスク管理Python:自動化、スクリプト、およびタスク管理Apr 16, 2025 am 12:14 AM

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

Pythonと時間:勉強時間を最大限に活用するPythonと時間:勉強時間を最大限に活用するApr 14, 2025 am 12:02 AM

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

Python:ゲーム、GUIなどPython:ゲーム、GUIなどApr 13, 2025 am 12:14 AM

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

AtomエディタMac版ダウンロード

AtomエディタMac版ダウンロード

最も人気のあるオープンソースエディター

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

Dreamweaver Mac版

Dreamweaver Mac版

ビジュアル Web 開発ツール