この記事では、Python カスタム プロセス プールを例とともに分析します。参考のために全員と共有すると、詳細は次のとおりです。CodeCodeはそれをすべて言っています:
rreee
ps:#encoding=utf-8 #author: walker #date: 2014-05-21 #function: 自定义进程池遍历目录下文件 from multiprocessing import Process, Queue, Lock import time, os #消费者 class Consumer(Process): def __init__(self, queue, ioLock): super(Consumer, self).__init__() self.queue = queue self.ioLock = ioLock def run(self): while True: task = self.queue.get() #队列中无任务时,会阻塞进程 if isinstance(task, str) and task == 'quit': break; time.sleep(1) #假定任务处理需要1秒钟 self.ioLock.acquire() print( str(os.getpid()) + ' ' + task) self.ioLock.release() self.ioLock.acquire() print 'Bye-bye' self.ioLock.release() #生产者 def Producer(): queue = Queue() #这个队列是进程/线程安全的 ioLock = Lock() subNum = 4 #子进程数量 workers = build_worker_pool(queue, ioLock, subNum) start_time = time.time() for parent, dirnames, filenames in os.walk(r'D:\test'): for filename in filenames: queue.put(filename) ioLock.acquire() print('qsize:' + str(queue.qsize())) ioLock.release() while queue.qsize() > subNum * 10: #控制队列中任务数量 time.sleep(1) for worker in workers: queue.put('quit') for worker in workers: worker.join() ioLock.acquire() print('Done! Time taken: {}'.format(time.time() - start_time)) ioLock.release() #创建进程池 def build_worker_pool(queue, ioLock, size): workers = [] for _ in range(size): worker = Consumer(queue, ioLock) worker.start() workers.append(worker) return workers if __name__ == '__main__': Producer()aveader:
self.ioLock.acquire() ... self.ioLock.release()代替。 もう 1 つの楽しい例:
with self.ioLock: ...Windows 7 で実行した結果:
#encoding=utf-8 #author: walker #date: 2016-01-06 #function: 一个多进程的好玩例子 import os, sys, time from multiprocessing import Pool cur_dir_fullpath = os.path.dirname(os.path.abspath(__file__)) g_List = ['a'] #修改全局变量g_List def ModifyDict_1(): global g_List g_List.append('b') #修改全局变量g_List def ModifyDict_2(): global g_List g_List.append('c') #处理一个 def ProcOne(num): print('ProcOne ' + str(num) + ', g_List:' + repr(g_List)) #处理所有 def ProcAll(): pool = Pool(processes = 4) for i in range(1, 20): #ProcOne(i) #pool.apply(ProcOne, (i,)) pool.apply_async(ProcOne, (i,)) pool.close() pool.join() ModifyDict_1() #修改全局变量g_List if __name__ == '__main__': ModifyDict_2() #修改全局变量g_List print('In main g_List :' + repr(g_List)) ProcAll()Ubuntu 14.04 で実行した結果:
λ python3 demo.py In main g_List :['a', 'b', 'c'] ProcOne 1, g_List:['a', 'b'] ProcOne 2, g_List:['a', 'b'] ProcOne 3, g_List:['a', 'b'] ProcOne 4, g_List:['a', 'b'] ProcOne 5, g_List:['a', 'b'] ProcOne 6, g_List:['a', 'b'] ProcOne 7, g_List:['a', 'b'] ProcOne 8, g_List:['a', 'b'] ProcOne 9, g_List:['a', 'b'] ProcOne 10, g_List:['a', 'b'] ProcOne 11, g_List:['a', 'b'] ProcOne 12, g_List:['a', 'b'] ProcOne 13, g_List:['a', 'b'] ProcOne 14, g_List:['a', 'b'] ProcOne 15, g_List:['a', 'b'] ProcOne 16, g_List:['a', 'b'] ProcOne 17, g_List:['a', 'b'] ProcOne 18, g_List:['a', 'b'] ProcOne 19, g_List:['a', 'b']Windows で 2 番目の変更を確認できます7 成功しませんでしたが、Ubuntu では変更は成功しました。 uliweb の作者 limodou 氏によると、その理由は、Windows では子プロセスが再起動によって実装されるのに対し、Linux では fork によって実装されるためです。 Python カスタム プロセス プール インスタンス分析 [プロデューサー モデルとコンシューマー モデルの問題] 関連記事の詳細については、PHP 中国語 Web サイトに注目してください。

Numpyを使用して多次元配列を作成すると、次の手順を通じて実現できます。1)numpy.array()関数を使用して、np.array([[1,2,3]、[4,5,6]])などの配列を作成して2D配列を作成します。 2)np.zeros()、np.ones()、np.random.random()およびその他の関数を使用して、特定の値で満たされた配列を作成します。 3)アレイの形状とサイズの特性を理解して、サブアレイの長さが一貫していることを確認し、エラーを回避します。 4)np.reshape()関数を使用して、配列の形状を変更します。 5)コードが明確で効率的であることを確認するために、メモリの使用に注意してください。

BroadcastinginNumPyisamethodtoperformoperationsonarraysofdifferentshapesbyautomaticallyaligningthem.Itsimplifiescode,enhancesreadability,andboostsperformance.Here'showitworks:1)Smallerarraysarepaddedwithonestomatchdimensions.2)Compatibledimensionsare

Forpythondatastorage、chooseLists forfficability withmixeddatypes、array.arrayformemory-efficienthogeneousnumericaldata、およびnumpyArrays foradvancednumericalcomputing.listSareversatilebuteficient efficient forlargeNumericaldatates;

pythonlistsarebetterthanarrays formangingdiversedatypes.1)listscanholdelementsofdifferenttypes、2)adearedditionsandremovals、3)theeofferintutiveoperation likeslicing、but4)theearlessememory-effice-hemory-hemory-hemory-hemory-hemory-adlower-dslorededatas。

toaccesselementsinapythonarray、useindexing:my_array [2] Accessesthirderement、Returning3.pythonuseszero basedIndexing.1)usepositiveandnegativeindexing:my_list [0] forteefirstelement、my_list [-1] exterarast.2)

記事では、構文のあいまいさのためにPythonにおけるタプル理解の不可能性について説明します。 Tupple式を使用してTuple()を使用するなどの代替は、Tuppleを効率的に作成するためにお勧めします。(159文字)

この記事では、Pythonのモジュールとパッケージ、その違い、および使用について説明しています。モジュールは単一のファイルであり、パッケージは__init__.pyファイルを備えたディレクトリであり、関連するモジュールを階層的に整理します。

記事では、PythonのDocstrings、それらの使用、および利点について説明します。主な問題:コードのドキュメントとアクセシビリティに関するドキュストリングの重要性。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

MantisBT
Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ホットトピック









