この記事では主に Python データ構造キューの実装に関する関連情報を紹介します。必要な方は参考にしてください
Python Queue
Queue キューは先入れ先出し (FIFO) データ型です。新しい要素をキューに追加し、キューの先頭から要素を削除してキューから取り出します。
リストを使用してキューを作成します。
queue = [] # 初始化一个列表数据类型对象, 作为一个队列 def enQ(): # 定义一个入栈方法 queue.append(raw_input('Enter New String: ').strip()) # 提示输入一个入队的 String 对象, 调用 Str.strip() 保证输入的 String 值不包含多余的空格 def deQ(): # 定义一个出队方法 if len(queue) == 0: print "Cannot pop from an empty queue!" else: print 'Remove [', `queue.pop(0)`, ']' # 使用反单引号(` `)来代替 repr(), 把 String 的值用引号扩起来, 而不仅显示 String 的值 # queue.pop(0) 总是将在队列中最前面的元素弹出 def viewQ(): # 定义一个显示队列中的内容的方法 print queue CMDs = {'u':enQ, 'o':deQ, 'v':viewQ} # 定义一个 Dict 类型对象, 将字符映射到相应的 function .可以通过输入字符来执行相应的操作 def showmenu(): # 定义一个操作菜单提示方法 pr = """ (E)nqueue (D)equeue (V)iew (Q)uit Enter choice: """ while True: while True: try: choice = raw_input(pr).strip()[0].lower() # Str.strip() 去除 String 对象前后的多余空格 # Str.lower() 将多有输入转化为小写, 便于后期的统一判断 # 输入 ^D(EOF, 产生一个 EOFError 异常) # 输入 ^C(中断退出, 产生一个 keyboardInterrupt 异常) except (EOFError, KeyboardInterrupt, IndexError): choice = 'q' print '\nYou picked: [%s]' % choice if choice not in 'uovq': print 'Invalid option, try again' else: break if choice == 'q': break CMDs[choice]() # 获取 Dict 中字符对应的 functionName, 实现函数调用 if __name__ == '__main__': showmenu()
キューの実装とスタックは非常に似ていますが、違いは、キューの合計が最初の要素をポップし、スタックが常に最後の要素を最初にポップすることです
読んでいただきありがとうございます。皆さんのお役に立てれば幸いです。このサイトのご支援に感謝します。
Python データ構造キューの実装に関連するその他の記事については、PHP 中国語 Web サイトに注目してください。

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

PythonとCは、メモリ管理と制御に大きな違いがあります。 1。Pythonは、参照カウントとガベージコレクションに基づいて自動メモリ管理を使用し、プログラマーの作業を簡素化します。 2.Cには、メモリの手動管理が必要であり、より多くの制御を提供しますが、複雑さとエラーのリスクが増加します。どの言語を選択するかは、プロジェクトの要件とチームテクノロジースタックに基づいている必要があります。

科学コンピューティングにおけるPythonのアプリケーションには、データ分析、機械学習、数値シミュレーション、視覚化が含まれます。 1.numpyは、効率的な多次元配列と数学的関数を提供します。 2。ScipyはNumpy機能を拡張し、最適化と線形代数ツールを提供します。 3. Pandasは、データ処理と分析に使用されます。 4.matplotlibは、さまざまなグラフと視覚的な結果を生成するために使用されます。

PythonまたはCを選択するかどうかは、プロジェクトの要件に依存するかどうかは次のとおりです。1)Pythonは、簡潔な構文とリッチライブラリのため、迅速な発展、データサイエンス、スクリプトに適しています。 2)Cは、コンピレーションと手動メモリ管理のため、システムプログラミングやゲーム開発など、高性能および基礎となる制御を必要とするシナリオに適しています。

Pythonは、データサイエンスと機械学習で広く使用されており、主にそのシンプルさと強力なライブラリエコシステムに依存しています。 1)Pandasはデータ処理と分析に使用され、2)Numpyが効率的な数値計算を提供し、3)SCIKIT-LEARNは機械学習モデルの構築と最適化に使用されます。これらのライブラリは、Pythonをデータサイエンスと機械学習に理想的なツールにします。

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

Web開発におけるPythonの主要なアプリケーションには、DjangoおよびFlaskフレームワークの使用、API開発、データ分析と視覚化、機械学習とAI、およびパフォーマンスの最適化が含まれます。 1。DjangoandFlask Framework:Djangoは、複雑な用途の迅速な発展に適しており、Flaskは小規模または高度にカスタマイズされたプロジェクトに適しています。 2。API開発:フラスコまたはdjangorestFrameworkを使用して、Restfulapiを構築します。 3。データ分析と視覚化:Pythonを使用してデータを処理し、Webインターフェイスを介して表示します。 4。機械学習とAI:Pythonは、インテリジェントWebアプリケーションを構築するために使用されます。 5。パフォーマンスの最適化:非同期プログラミング、キャッシュ、コードを通じて最適化

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

SublimeText3 中国語版
中国語版、とても使いやすい

Dreamweaver Mac版
ビジュアル Web 開発ツール

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。
