特定のクラスのメソッドまたはプロパティにアクセスしたい場合は、まずクラスをインスタンス化してから、クラスのオブジェクトと . 記号を使用してアクセスする必要があります。例:
ユーザー クラスとパスワード (暗号化と復号化) を処理するクラスがあります。ユーザー インスタンスが生成されなかった後は、パスワード クラスでパスワードを暗号化および復号化する必要があります。
using System; using System.Collections.Generic; using System.Text; using System.Security.Cryptography; using System.IO; namespace YYS.CSharpStudy.MainConsole.Static { /// <summary> /// 用户类 /// </summary> public class User { //加密解密用到的Key private string key = "20120719"; //加密解密用到的向量 private string ivalue = "12345678"; private string userName; private string userEncryptPassword; private string userDecryptPassword; /// <summary> /// 用户名 /// </summary> public string UserName { get { return userName; } } /// <summary> /// 用户密码,加密后的密码 /// </summary> public string UserEncryptPassword { get { return userEncryptPassword; } } /// <summary> /// 用户密码,解密后的密码 /// </summary> public string UserDecryptPassword { get { DES des = new DES(); this.userDecryptPassword = des.Decrypt(userEncryptPassword, key, ivalue); return userDecryptPassword; } } /// <summary> /// 构造函数 /// </summary> /// <param name="userName"></param> /// <param name="userPassword"></param> public User(string userName, string userPassword) { this.userName = userName; DES des = new DES(); this.userEncryptPassword = des.Encrypt(userPassword, key, ivalue); } } /// <summary> /// 处理密码的类 /// </summary> public class DES { /// <summary> /// 加密字符串 /// </summary> public string Encrypt(string sourceString, string key, string iv) { try { byte[] btKey = Encoding.UTF8.GetBytes(key); byte[] btIV = Encoding.UTF8.GetBytes(iv); DESCryptoServiceProvider des = new DESCryptoServiceProvider(); using (MemoryStream ms = new MemoryStream()) { byte[] inData = Encoding.UTF8.GetBytes(sourceString); try { using (CryptoStream cs = new CryptoStream(ms, des.CreateEncryptor(btKey, btIV), CryptoStreamMode.Write)) { cs.Write(inData, 0, inData.Length); cs.FlushFinalBlock(); } return Convert.ToBase64String(ms.ToArray()); } catch { return sourceString; } } } catch { } return sourceString; } /// <summary> /// 解密字符串 /// </summary> public string Decrypt(string encryptedString, string key, string iv) { byte[] btKey = Encoding.UTF8.GetBytes(key); byte[] btIV = Encoding.UTF8.GetBytes(iv); DESCryptoServiceProvider des = new DESCryptoServiceProvider(); using (MemoryStream ms = new MemoryStream()) { byte[] inData = Convert.FromBase64String(encryptedString); try { using (CryptoStream cs = new CryptoStream(ms, des.CreateDecryptor(btKey, btIV), CryptoStreamMode.Write)) { cs.Write(inData, 0, inData.Length); cs.FlushFinalBlock(); } return Encoding.UTF8.GetString(ms.ToArray()); } catch { return encryptedString; } } } } }
Call:
class Program { static void Main(string[] args) { User user = new User("yangyoushan", "000000"); Console.WriteLine(string.Format("用户名:{0}", user.UserName)); Console.WriteLine(string.Format("加密后的密码:{0}", user.UserEncryptPassword)); Console.WriteLine(string.Format("明文的密码:{0}", user.UserDecryptPassword)); Console.ReadKey(); } }
Result:
これら 2 つのクラスによって実装されたコードには 2 つの問題があります。
1. インスタンス化されるユーザーごとに
DES des = new DES(); this.userEncryptPassword = des.Encrypt(userPassword, key, ivalue);
を実行します。これは、DES インスタンスを毎回インスタンス化する必要があることを意味します。 DES はメソッドを呼び出すだけでインスタンス化されるのですが、メソッドを呼び出すたびにインスタンス化するのは不便ですし、メモリの消費も増えます。
2.
//加密解密用到的Key private string key = "20120719"; //加密解密用到的向量 private string ivalue = "12345678";
の場合、これら 2 つの変数はすべてのユーザー インスタンスによって使用され、変更されません。ただし、ユーザーがインスタンス化されるたびにスペースを割り当てる必要があり、これもメモリを消費するため、オブジェクト指向の考え方からするとあまり合理的ではありません。
この場合、DES の 2 つのメソッドを共有し、インスタンス化せずに直接呼び出すのが最善です。たとえば、Math のすべてのメソッド (Math.Abs(1);)。もう 1 つは、User の key 変数と ivalue 変数を public に設定する方法です。これらの変数には直接アクセスすることもでき、メモリ空間は 1 回だけ割り当てられるため、ユーザーのインスタンス化時に個別に割り当てる必要はありません。
これには、static、つまり static キーワードを使用する必要があります。いわゆる静的とは、メンバーがクラスによって共有されることを意味します。つまり、static として宣言されたメンバーは、特定のクラスのオブジェクトには属しませんが、このクラスのすべてのオブジェクトに属します。クラスのすべてのメンバーは静的として宣言でき、静的フィールド、静的プロパティ、または静的メソッドを宣言できます。ただし、ここでは const と static を区別する必要があります。const はプログラムの実行中に定数の値を変更できないことを意味しますが、static は 1 か所で変更すると、変更された値が変更されます。他の場所からアクセスできるようになります。
このように、次のように静的を使用して上記のコードを最適化できます:
using System; using System.Collections.Generic; using System.Text; using System.Security.Cryptography; using System.IO; namespace YYS.CSharpStudy.MainConsole.Static { /// <summary> /// 用户类 /// </summary> public class User { //加密解密用到的Key private static string key = "20120719"; //加密解密用到的向量 private static string ivalue = "12345678"; private string userName; private string userEncryptPassword; private string userDecryptPassword; /// <summary> /// 用户名 /// </summary> public string UserName { get { return userName; } } /// <summary> /// 用户密码,加密后的密码 /// </summary> public string UserEncryptPassword { get { return userEncryptPassword; } } /// <summary> /// 用户密码,解密后的密码 /// </summary> public string UserDecryptPassword { get { //使用静态方法和静态字段 this.userDecryptPassword = DES.Decrypt(userEncryptPassword, key, ivalue); return userDecryptPassword; } } /// <summary> /// 构造函数 /// </summary> /// <param name="userName"></param> /// <param name="userPassword"></param> public User(string userName, string userPassword) { this.userName = userName; this.userEncryptPassword = DES.Encrypt(userPassword, key, ivalue); } } /// <summary> /// 处理密码的类 /// </summary> public class DES { /// <summary> /// 加密字符串 /// </summary> public static string Encrypt(string sourceString, string key, string iv) { try { byte[] btKey = Encoding.UTF8.GetBytes(key); byte[] btIV = Encoding.UTF8.GetBytes(iv); DESCryptoServiceProvider des = new DESCryptoServiceProvider(); using (MemoryStream ms = new MemoryStream()) { byte[] inData = Encoding.UTF8.GetBytes(sourceString); try { using (CryptoStream cs = new CryptoStream(ms, des.CreateEncryptor(btKey, btIV), CryptoStreamMode.Write)) { cs.Write(inData, 0, inData.Length); cs.FlushFinalBlock(); } return Convert.ToBase64String(ms.ToArray()); } catch { return sourceString; } } } catch { } return sourceString; } /// <summary> /// 解密字符串 /// </summary> public static string Decrypt(string encryptedString, string key, string iv) { byte[] btKey = Encoding.UTF8.GetBytes(key); byte[] btIV = Encoding.UTF8.GetBytes(iv); DESCryptoServiceProvider des = new DESCryptoServiceProvider(); using (MemoryStream ms = new MemoryStream()) { byte[] inData = Convert.FromBase64String(encryptedString); try { using (CryptoStream cs = new CryptoStream(ms, des.CreateDecryptor(btKey, btIV), CryptoStreamMode.Write)) { cs.Write(inData, 0, inData.Length); cs.FlushFinalBlock(); } return Encoding.UTF8.GetString(ms.ToArray()); } catch { return encryptedString; } } } } }
実行結果:
ただし、注意すべき点の 1 つは、一般的なメソッドは静的プロパティまたはメソッド外の静的メソッドにアクセスできることです。ただし、静的メソッドのメソッド外のプロパティまたはメソッドにアクセスする場合は、アクセスされるプロパティとメソッドも静的である必要があります。一般的な属性またはメソッドはインスタンス化後に領域を割り当てた後でのみ使用できますが、静的メソッドではメモリ領域がコンパイル中に直接割り当てられるため、静的メソッド内で他の属性またはメソッドを呼び出すことはできず、静的メソッドのみを呼び出すことができます。同時に。
上記は C# の基礎知識をまとめたものです: 基礎知識 (10) 静的コンテンツ その他の関連コンテンツについては、PHP 中国語 Web サイト (www.php.cn) に注目してください。

C#と.NETランタイムは密接に連携して、開発者に効率的で強力なプラットフォームの開発機能に力を与えます。 1)C#は、.NETフレームワークとシームレスに統合するように設計されたタイプセーフおよびオブジェクト指向のプログラミング言語です。 2).NETランタイムは、C#コードの実行を管理し、ガベージコレクション、タイプの安全性、その他のサービスを提供し、効率的でクロスプラットフォームの操作を保証します。

C#.NET開発を開始するには、次のことが必要です。1。C#の基本的な知識と.NETフレームワークのコア概念を理解する。 2。変数、データ型、制御構造、関数、クラスの基本概念をマスターします。 3。LINQや非同期プログラミングなど、C#の高度な機能を学習します。 4.一般的なエラーのためのデバッグテクニックとパフォーマンス最適化方法に精通してください。これらの手順を使用すると、C#.NETの世界に徐々に浸透し、効率的なアプリケーションを書き込むことができます。

C#と.NETの関係は切り離せませんが、同じものではありません。 C#はプログラミング言語であり、.NETは開発プラットフォームです。 C#は、コードの書き込み、.NETの中間言語(IL)にコンパイルされ、.NET Runtime(CLR)によって実行されるために使用されます。

C#.NETは、複数のアプリケーション開発をサポートする強力なツールとライブラリを提供するため、依然として重要です。 1)C#は.NETフレームワークを組み合わせて、開発を効率的かつ便利にします。 2)C#のタイプの安全性とゴミ収集メカニズムは、その利点を高めます。 3).NETは、クロスプラットフォームの実行環境とリッチAPIを提供し、開発の柔軟性を向上させます。

c#.netisversatileforbothwebanddesktopdevelopment.1)forweb、useasp.netfordynamicapplications.2)fordesktop、equindowsorwpfforrichinterfaces.3)usexamarinforcross-platformdeveliment、enabling deshacrosswindows、

C#と.NETは、継続的な更新と最適化を通じて、新しいテクノロジーのニーズに適応します。 1)C#9.0および.NET5は、レコードタイプとパフォーマンスの最適化を導入します。 2).Netcoreは、クラウドネイティブおよびコンテナ化されたサポートを強化します。 3)ASP.Netcoreは、最新のWebテクノロジーと統合されています。 4)ML.NETは、機械学習と人工知能をサポートしています。 5)非同期プログラミングとベストプラクティスはパフォーマンスを改善します。

c#.netissuitableforenterprise-levelApplicationsとsystemduetoitsSystemdutyping、richlibraries、androbustperformance.

.NETでのC#のプログラミングプロセスには、次の手順が含まれます。1)C#コードの作成、2)中間言語(IL)にコンパイルし、3).NETランタイム(CLR)によって実行される。 .NETのC#の利点は、デスクトップアプリケーションからWebサービスまでのさまざまな開発シナリオに適した、最新の構文、強力なタイプシステム、および.NETフレームワークとの緊密な統合です。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

SublimeText3 中国語版
中国語版、とても使いやすい

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境
