検索
ホームページバックエンド開発Python チュートリアルPython で文字列連結を実装する 3 つの方法と、その効率性と適用可能なシナリオの詳細な説明

この記事では、主に Python での文字列接続の 3 つの方法、その効率、および適用可能なシナリオの詳細な説明を紹介します。一定の参考価値があり、興味のある友人は参照できます。

Python の文字列連結メソッドには、一般に次の 3 つのメソッドがあります:

メソッド 1: プラス (+) 演算子を介して直接接続する


website = 'python' + 'tab' + '.com'


メソッド 2: join メソッド


rrreええ


方法 3:


listStr = ['python', 'tab', '.com'] 
website = ''.join(listStr)


3 つの方法の違いについて話しましょう

方法 1 はシンプルで直接使用できますが、インターネット上の多くの人がこう言っています。メソッドは非効率的です

Python で文字列を接続するために + を使用するのが非効率的である理由は、Python の文字列は不変型であるため、2 つの文字列を接続するために + を使用すると、新しい文字列をメモリに再度適用する必要があります。連続する文字列が多い場合 (a+b+c+d+e+f+...)、効率の低下は避けられません

方法 2、使用方法は少し複雑ですが、複数の文字を接続する場合は効率的です。メモリ アプリケーションは 1 つだけです。そして、リストの文字を接続する場合は、この方法を最初の選択肢にする必要があります

方法 3: 文字列の書式設定、この方法は非常に一般的に使用されます。私もこの方法をお勧めします

次の実験は、文字列を説明するために使用されます。接続効率の問題。

比較対象: plus接続 VS join接続

Pythonバージョン: python2.7

システム環境: CentOS

実験1:


website = '%s%s%s' % ('python', 'tab', '.com')


結果:

0.64 1695976257

0.341440916061

実験 2:


# -*- coding: utf-8 -*-

from time import time

def method1():

  t = time()

  for i in xrange(100000):

    s = 'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'+'pythontab'

  print time() - t

def method2():

  t = time()

  for i in xrange(100000):

    s = ''.join(['pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab','pythontab'])

  print time() -t

method1()

method2()


結果:

0.0265691280365

0.0522091388702

上記の 2 つの実験では、まったく異なる結果が得られました。 2 つの実験の唯一の違いは、文字数です。文字列接続。

結論: 複数の文字列接続を連続して実行すると、プラス記号接続の効率が低くなります。接続数が少ない場合、プラス記号接続の効率は結合接続よりも高くなります

上記が全体の内容です。この記事が皆さんの学習に役立つことを願っています。また、皆さんが PHP 中国語 Web サイトをサポートしてくれることを願っています。

Python の文字列連結の 3 つの方法とその効率性、適用可能なシナリオの詳細については、PHP 中国語 Web サイトに注目してください。


声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
numpyアレイは、アレイモジュールを使用して作成された配列とどのように異なりますか?numpyアレイは、アレイモジュールを使用して作成された配列とどのように異なりますか?Apr 24, 2025 pm 03:53 PM

numpyarraysarasarebetterfornumeroperations andmulti-dimensionaldata、whilethearraymoduleissuitable forbasic、1)numpyexcelsinperformance and forlargedatasentassandcomplexoperations.2)thearraymuremememory-effictientivearientfa

Numpyアレイの使用は、Pythonで配列モジュール配列の使用と比較してどのように比較されますか?Numpyアレイの使用は、Pythonで配列モジュール配列の使用と比較してどのように比較されますか?Apr 24, 2025 pm 03:49 PM

NumPyArraySareBetterforHeavyNumericalComputing、whilethearrayarayismoreSuitableformemory-constrainedprojectswithsimpledatatypes.1)numpyarraysofferarays andatiledance andpeperancedatasandatassandcomplexoperations.2)thearraymoduleisuleiseightweightandmemememe-ef

CTypesモジュールは、Pythonの配列にどのように関連していますか?CTypesモジュールは、Pythonの配列にどのように関連していますか?Apr 24, 2025 pm 03:45 PM

ctypesallowsinging andmanipulatingc-stylearraysinpython.1)usectypestointerfacewithclibrariesforperformance.2)createc-stylearraysfornumericalcomputations.3)passarraystocfunctions foreffientientoperations.how、how、becuutiousmorymanagemation、performanceo

Pythonのコンテキストで「配列」と「リスト」を定義します。Pythonのコンテキストで「配列」と「リスト」を定義します。Apr 24, 2025 pm 03:41 PM

Inpython、「リスト」は、「リスト」、自由主義的なもの、samememory効率が高く、均質な偶然の瞬間の想起された「アレイ」の「アレイ」の「アレイ」の均質な偶発的な想起されたものです

Pythonリストは可変ですか、それとも不変ですか? Pythonアレイはどうですか?Pythonリストは可変ですか、それとも不変ですか? Pythonアレイはどうですか?Apr 24, 2025 pm 03:37 PM

pythonlistsandarraysaraybothmutable.1)listsareflexibleandsupportheTeterdatabutarlessmemory-efficient.2)Arraysaremorememory-efficientiant forhomogeneousdative、ressivelessatile、ressing comerttytytypecodeusageodoavoiderorors。

Python vs. C:重要な違​​いを理解しますPython vs. C:重要な違​​いを理解しますApr 21, 2025 am 12:18 AM

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。

Python vs. C:プロジェクトのためにどの言語を選択しますか?Python vs. C:プロジェクトのためにどの言語を選択しますか?Apr 21, 2025 am 12:17 AM

PythonまたはCの選択は、プロジェクトの要件に依存します。1)迅速な開発、データ処理、およびプロトタイプ設計が必要な場合は、Pythonを選択します。 2)高性能、低レイテンシ、および緊密なハードウェアコントロールが必要な場合は、Cを選択します。

Pythonの目標に到達する:毎日2時間のパワーPythonの目標に到達する:毎日2時間のパワーApr 20, 2025 am 12:21 AM

毎日2時間のPython学習を投資することで、プログラミングスキルを効果的に改善できます。 1.新しい知識を学ぶ:ドキュメントを読むか、チュートリアルを見る。 2。練習:コードと完全な演習を書きます。 3。レビュー:学んだコンテンツを統合します。 4。プロジェクトの実践:実際のプロジェクトで学んだことを適用します。このような構造化された学習計画は、Pythonを体系的にマスターし、キャリア目標を達成するのに役立ちます。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

AtomエディタMac版ダウンロード

AtomエディタMac版ダウンロード

最も人気のあるオープンソースエディター

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

WebStorm Mac版

WebStorm Mac版

便利なJavaScript開発ツール