はじめに
ハッシュ テーブルは、ほぼすべての C プログラムで使用されます。 C 言語では配列のキーとして整数のみを使用できるため、PHP はハッシュ アルゴリズムを通じて文字列のキー名を制限されたサイズの配列にマップするハッシュ テーブルを設計しました。これにより必然的に衝突が発生するため、PHP はリンク リストを使用してこの問題を解決します。
ハッシュ テーブルを実装する方法はたくさんありますが、どれも完璧ではありません。各設計は特定の焦点に重点を置いており、CPU 使用率を削減するもの、メモリをより合理的に使用するもの、スレッド レベルの拡張をサポートできるものがあります。
ハッシュ テーブルの実装方法に多様性がある理由は、それぞれの実装方法が独自の焦点を絞って改善することしかできず、すべてをカバーできるわけではないためです。
データ構造
導入を始める前に、事前に何かを宣言する必要があります:
ハッシュ テーブルのキー名は文字列または整数です。文字列の場合は型を zend_string として宣言し、整数の場合は zend_ulong として宣言します。
ハッシュテーブルの順序は、テーブル内の要素の挿入順序に従います。
ハッシュテーブルの容量は自動的に拡張・縮小されます。
内部的には、ハッシュ テーブルの容量は常に 2 の倍数です。
ハッシュテーブルの各要素はzval型のデータである必要があります。
HashTable の構造は次のとおりです:
struct _zend_array { zend_refcounted_h gc; union { struct { ZEND_ENDIAN_LOHI_4( zend_uchar flags, zend_uchar nApplyCount, zend_uchar nIteratorsCount, zend_uchar reserve) } v; uint32_t flags; } u; uint32_t nTableMask; Bucket *arData; uint32_t nNumUsed; uint32_t nNumOfElements; uint32_t nTableSize; uint32_t nInternalPointer; zend_long nNextFreeElement; dtor_func_t pDestructor; };
この構造は 56 バイトを占めます。
最も重要なフィールドは、Bucket 型データへのポインタである arData です。Bucket 構造は次のように定義されます:
typedef struct _Bucket { zval val; zend_ulong h; /* hash value (or numeric index) */ zend_string *key; /* string key or NULL for numerics */ } Bucket;
zval 型データへのポインタは、Bucket では使用されなくなりましたが、データ自体は直接使用されます。 。 PHP7 では、ヒープ割り当てを必要とするデータが zval 構造体のポインターとして格納されるため、zval はヒープ割り当てを使用しなくなりました。 (PHP 文字列など)。
以下はメモリに保存されている arData の構造です:
すべてのバケットが順番に保存されていることがわかります。
要素の挿入
PHP は、配列の要素が挿入順に格納されることを保証します。このようにして、foreach を使用して配列をループする場合、挿入順に走査することができます。次のような配列があるとします。
$a = [9 => "foo", 2 => 42, []]; var_dump($a); array(3) { [9]=> string(3) "foo" [2]=> int(42) [10]=> array(0) { } }
すべてのデータはメモリ内で隣接しています。
これを行うと、ハッシュテーブルのイテレータを処理するロジックが非常にシンプルになります。 arData 配列を直接走査するだけです。メモリ内の隣接するデータを走査すると、CPU キャッシュが大幅に使用されます。 CPU キャッシュは arData 全体を読み取ることができるため、各要素へのアクセスはマイクロ秒レベルになります。
size_t i; Bucket p; zval val; for (i=0; i < ht->nTableSize; i++) { p = ht->arData[i]; val = p.val; /* do something with val */ }
ご覧のとおり、データは arData に順番に保存されます。このような構造を実装するには、次に利用可能なノードの位置を知る必要があります。この位置は、配列構造の nNum Used フィールドに保存されます。
新しいデータが追加されるたびに、保存後に ht->nNumused++ が実行されます。 nNum Used 値がハッシュ テーブル内のすべての要素の最大値 (nNumOfElements) に達すると、「圧縮または拡張」アルゴリズムがトリガーされます。
以下は、ハッシュ テーブルに要素を挿入する簡単な実装例です:
idx = ht->nNumUsed++; /* take the next avalaible slot number */ ht->nNumOfElements++; /* increment number of elements */ /* ... */ p = ht->arData + idx; /* Get the bucket in that slot from arData */ p->key = key; /* Affect it the key we want to insert at */ /* ... */ p->h = h = ZSTR_H(key); /* save the hash of the current key into the bucket */ ZVAL_COPY_VALUE(&p->val, pData); /* Copy the value into the bucket's value : add operation */
挿入するとき、要素は arData 配列の最後にのみ挿入され、削除されたノードは挿入されないことがわかります。満たされました。
删除元素
当删除哈希表中的一项元素时,哈希表不会自动伸缩实际存储的数据空间,而是设置了一个值为 UNDEF 的 zval,表示当前节点已经被删除。
如下图所示:
因此,在循环数组元素时,需要特殊判断空节点:
size_t i; Bucket p; zval val; for (i=0; i < ht->nTableSize; i++) { p = ht->arData[i]; val = p.val; if (Z_TYPE(val) == IS_UNDEF) { /* empty hole ? */ continue; /* skip it */ } /* do something with val */ }
即使是一个十分巨大的哈希表,循环每个节点并跳过那些删除的节点也是非常快速的,这得益于 arData 的节点在内存中存放的位置总是相邻的。
哈希定位元素
当我们得到一个字符串的键名,我们必须使用哈希算法计算得到哈希后的值,并且能够通过哈希值索引找到 arData 中对应的那个元素。
我们并不能直接使用哈希后的值作为 arData 数组的索引,因为这样就无法保证元素按照插入顺序存储。
举个例子:如果我插入的键名先是 foo,然后是 bar,假设 foo 哈希后的结果是5,而 bar哈希后的结果是3。如果我们将 foo 存在 arData[5],而 bar 存在 arData[3],这意味着 bar 元素要在 foo 元素的前面,这和我们插入的顺序正好是相反的。
所以,当我们通过算法哈希了键名后,我们需要一张 转换表,转换表保存了哈希后的结果与实际存储的节点的映射关系。
这里在设计的时候取了个巧:将转换表存储以 arData 起始指针为起点做镜面映射存储。这样,我们不需要额外的空间存储,在分配 arData 空间的同时也分配了转换表。
以下是有8个元素的哈希表 + 转换表的数据结构:
现在,当我们要访问 foo 所指的元素时,通过哈希算法得到值后按照哈希表分配的元素大小做取模,就能得到我们在转换表中存储的节点索引值。
如我们所见,转换表中的节点的索引与数组数据元素的节点索引是相反数的关系,nTableMask 等于哈希表大小的负数值,通过取模我们就能得到0到-7之间的数,从而定位到我们所需元素所在的索引值。综上,我们为 arData 分配存储空间时,需要使用 tablesize * sizeof(bucket) + tablesize * sizeof(uint32) 的计算方式计算存储空间大小。
在源码里也清晰的划分了两个区域:
#define HT_HASH_SIZE(nTableMask) (((size_t)(uint32_t)-(int32_t)(nTableMask)) * sizeof(uint32_t)) #define HT_DATA_SIZE(nTableSize) ((size_t)(nTableSize) * sizeof(Bucket)) #define HT_SIZE_EX(nTableSize, nTableMask) (HT_DATA_SIZE((nTableSize)) + HT_HASH_SIZE((nTableMask))) #define HT_SIZE(ht) HT_SIZE_EX((ht)->nTableSize, (ht)->nTableMask) Bucket *arData; arData = emalloc(HT_SIZE(ht)); /* now alloc this */
我们将宏替换的结果展开:
(((size_t)(((ht)->nTableSize)) * sizeof(Bucket)) + (((size_t)(uint32_t)-(int32_t)(((ht)->nTableMask))) * sizeof(uint32_t)))
碰撞冲突
接下来我们看看如何解决哈希表的碰撞冲突问题。哈希表的键名可能会被哈希到同一个节点。所以,当我们访问到转换后的节点,我们需要对比键名是否我们查找的。如果不是,我们将通过 zval.u2.next 字段读取链表上的下一个数据。
注意这里的链表结构并没像传统链表一样在在内存中分散存储。我们直接读取 arData 整个数组,而不是通过堆(heap)获取内存地址分散的指针。
这是 PHP7 性能提升的一个重要点。数据局部性让 CPU 不必经常访问缓慢的主存储,而是直接从 CPU 的 L1 缓存中读取到所有的数据。
所以,我们看到向哈希表添加一个元素是这样操作的:
idx = ht->nNumUsed++; ht->nNumOfElements++; if (ht->nInternalPointer == HT_INVALID_IDX) { ht->nInternalPointer = idx; } zend_hash_iterators_update(ht, HT_INVALID_IDX, idx); p = ht->arData + idx; p->key = key; if (!ZSTR_IS_INTERNED(key)) { zend_string_addref(key); ht->u.flags &= ~HASH_FLAG_STATIC_KEYS; zend_string_hash_val(key); } p->h = h = ZSTR_H(key); ZVAL_COPY_VALUE(&p->val, pData); nIndex = h | ht->nTableMask; Z_NEXT(p->val) = HT_HASH(ht, nIndex); HT_HASH(ht, nIndex) = HT_IDX_TO_HASH(idx);
同样的规则也适用于删除元素:
#define HT_HASH_TO_BUCKET_EX(data, idx) ((data) + (idx)) #define HT_HASH_TO_BUCKET(ht, idx) HT_HASH_TO_BUCKET_EX((ht)->arData, idx) h = zend_string_hash_val(key); /* get the hash from the key (assuming string key here) */ nIndex = h | ht->nTableMask; /* get the translation table index */ idx = HT_HASH(ht, nIndex); /* Get the slot corresponding to that translation index */ while (idx != HT_INVALID_IDX) { /* If there is a corresponding slot */ p = HT_HASH_TO_BUCKET(ht, idx); /* Get the bucket from that slot */ if ((p->key == key) || /* Is it the right bucket ? same key pointer ? */ (p->h == h && /* ... or same hash */ p->key && /* and a key (string key based) */ ZSTR_LEN(p->key) == ZSTR_LEN(key) && /* and same key length */ memcmp(ZSTR_VAL(p->key), ZSTR_VAL(key), ZSTR_LEN(key)) == 0)) { /* and same key content ? */ _zend_hash_del_el_ex(ht, idx, p, prev); /* that's us ! delete us */ return SUCCESS; } prev = p; idx = Z_NEXT(p->val); /* get the next corresponding slot from current one */ } return FAILURE;
转换表和哈希表的初始化
HT_INVALID_IDX 作为一个特殊的标记,在转换表中表示:对应的数据节点没有有效的数据,直接跳过。
哈希表之所以能极大地减少那些创建时就是空值的数组的开销,得益于他的两步的初始化过程。当新的哈希表被创建时,我们只创建两个转换表节点,并且都赋予 HT_INVALID_IDX 标记。
#define HT_MIN_MASK ((uint32_t) -2) #define HT_HASH_SIZE(nTableMask) (((size_t)(uint32_t)-(int32_t)(nTableMask)) * sizeof(uint32_t)) #define HT_SET_DATA_ADDR(ht, ptr) do { (ht)->arData = (Bucket*)(((char*)(ptr)) + HT_HASH_SIZE((ht)->nTableMask)); } while (0) static const uint32_t uninitialized_bucket[-HT_MIN_MASK] = {HT_INVALID_IDX, HT_INVALID_IDX}; /* hash lazy init */ ZEND_API void ZEND_FASTCALL _zend_hash_init(HashTable *ht, uint32_t nSize, dtor_func_t pDestructor, zend_bool persistent ZEND_FILE_LINE_DC) { /* ... */ ht->nTableSize = zend_hash_check_size(nSize); ht->nTableMask = HT_MIN_MASK; HT_SET_DATA_ADDR(ht, &uninitialized_bucket); ht->nNumUsed = 0; ht->nNumOfElements = 0; }
注意到这里不需要使用堆分配内存,而是使用静态的内存区域,这样更轻量。
然后,当第一个元素插入时,我们会完整的初始化哈希表,这时我们才创建所需的转换表的空间(如果不确定数组大小,则默认是8个元素)。这时,我们将使用堆分配内存。
#define HT_HASH_EX(data, idx) ((uint32_t*)(data))[(int32_t)(idx)] #define HT_HASH(ht, idx) HT_HASH_EX((ht)->arData, idx) (ht)->nTableMask = -(ht)->nTableSize; HT_SET_DATA_ADDR(ht, pemalloc(HT_SIZE(ht), (ht)->u.flags & HASH_FLAG_PERSISTENT)); memset(&HT_HASH(ht, (ht)->nTableMask), HT_INVALID_IDX, HT_HASH_SIZE((ht)->nTableMask))
HT_HASH 宏能够使用负数偏移量访问转换表中的节点。哈希表的掩码总是负数,因为转换表的节点的索引值是 arData 数组的相反数。这才是C语言的编程之美:你可以创建无数的节点,并且不需要关心内存访问的性能问题。
以下是一个延迟初始化的哈希表结构:
哈希表的碎片化、重组和压缩
当哈希表填充满并且还需要插入元素时,哈希表必须重新计算自身的大小。哈希表的大小总是成倍增长。当对哈希表扩容时,我们会预分配 arBucket 类型的C数组,并且向空的节点中存入值为 UNDEF 的 zval。在节点插入数据之前,这里会浪费 (new_size – old_size) * sizeof(Bucket) 字节的空间。
如果一个有1024个节点的哈希表,再添加元素时,哈希表将会扩容到2048个节点,其中1023个节点都是空节点,这将消耗 1023 * 32 bytes = 32KB 的空间。这是 PHP 哈希表实现方式的缺陷,因为没有完美的解决方案。
编程就是一个不断设计妥协式的解决方案的过程。在底层编程中,就是对 CPU 还是内存的一次取舍。
哈希表可能全是 UNDEF 的节点。当我们插入许多元素后,又删除了它们,哈希表就会碎片化。因为我们永远不会向 arData 中间节点插入数据,这样我们就可能会看到很多 UNDEF节点。
举个例子来说:
重组 arData 可以整合碎片化的数组元素。当哈希表需要被重组时,首先它会自我压缩。当它压缩之后,会计算是否需要扩容,如果需要的话,同样是成倍扩容。如果不需要,数据会被重新分配到已有的节点中。这个算法不会在每次元素被删除时运行,因为需要消耗大量的 CPU 计算。
以下是压缩后的数组:
压缩算法会遍历所有 arData 里的元素并且替换原来有值的节点为 UNDEF。如下所示:
Bucket *p; uint32_t nIndex, i; HT_HASH_RESET(ht); i = 0; p = ht->arData; do { if (UNEXPECTED(Z_TYPE(p->val) == IS_UNDEF)) { uint32_t j = i; Bucket *q = p; while (++i < ht->nNumUsed) { p++; if (EXPECTED(Z_TYPE_INFO(p->val) != IS_UNDEF)) { ZVAL_COPY_VALUE(&q->val, &p->val); q->h = p->h; nIndex = q->h | ht->nTableMask; q->key = p->key; Z_NEXT(q->val) = HT_HASH(ht, nIndex); HT_HASH(ht, nIndex) = HT_IDX_TO_HASH(j); if (UNEXPECTED(ht->nInternalPointer == i)) { ht->nInternalPointer = j; } q++; j++; } } ht->nNumUsed = j; break; } nIndex = p->h | ht->nTableMask; Z_NEXT(p->val) = HT_HASH(ht, nIndex); HT_HASH(ht, nIndex) = HT_IDX_TO_HASH(i); p++; } while (++i < ht->nNumUsed);
结语
到此,PHP 哈希表的实现基础已经介绍完毕,关于哈希表还有一些进阶的内容没有翻译,因为接下来我准备继续分享 PHP 内核的其他知识点,关于哈希表感兴趣的同学可以移步到原文。
以上就是PHP7 哈希表实现原理的内容,更多相关内容请关注PHP中文网(www.php.cn)!

データベースストレージセッションを使用することの主な利点には、持続性、スケーラビリティ、セキュリティが含まれます。 1。永続性:サーバーが再起動しても、セッションデータは変更されないままになります。 2。スケーラビリティ:分散システムに適用され、セッションデータが複数のサーバー間で同期されるようにします。 3。セキュリティ:データベースは、機密情報を保護するための暗号化されたストレージを提供します。

PHPでのカスタムセッション処理の実装は、SessionHandlerInterfaceインターフェイスを実装することで実行できます。具体的な手順には、次のものが含まれます。1)CussentsessionHandlerなどのSessionHandlerInterfaceを実装するクラスの作成。 2)セッションデータのライフサイクルとストレージ方法を定義するためのインターフェイス(オープン、クローズ、読み取り、書き込み、破壊、GCなど)の書き換え方法。 3)PHPスクリプトでカスタムセッションプロセッサを登録し、セッションを開始します。これにより、データをMySQLやRedisなどのメディアに保存して、パフォーマンス、セキュリティ、スケーラビリティを改善できます。

SessionIDは、ユーザーセッションのステータスを追跡するためにWebアプリケーションで使用されるメカニズムです。 1.ユーザーとサーバー間の複数のインタラクション中にユーザーのID情報を維持するために使用されるランダムに生成された文字列です。 2。サーバーは、ユーザーの複数のリクエストでこれらの要求を識別および関連付けるのに役立つCookieまたはURLパラメーターを介してクライアントに生成および送信します。 3.生成は通常、ランダムアルゴリズムを使用して、一意性と予測不可能性を確保します。 4.実際の開発では、Redisなどのメモリ内データベースを使用してセッションデータを保存してパフォーマンスとセキュリティを改善できます。

APIなどのステートレス環境でのセッションの管理は、JWTまたはCookieを使用して達成できます。 1。JWTは、無国籍とスケーラビリティに適していますが、ビッグデータに関してはサイズが大きいです。 2.cookiesはより伝統的で実装が簡単ですが、セキュリティを確保するために慎重に構成する必要があります。

セッション関連のXSS攻撃からアプリケーションを保護するには、次の測定が必要です。1。セッションCookieを保護するためにHTTPonlyとセキュアフラグを設定します。 2。すべてのユーザー入力のエクスポートコード。 3.コンテンツセキュリティポリシー(CSP)を実装して、スクリプトソースを制限します。これらのポリシーを通じて、セッション関連のXSS攻撃を効果的に保護し、ユーザーデータを確保できます。

PHPセッションのパフォーマンスを最適化する方法は次のとおりです。1。遅延セッション開始、2。データベースを使用してセッションを保存します。これらの戦略は、高い並行性環境でのアプリケーションの効率を大幅に改善できます。

thesession.gc_maxlifettinginttinginphpdethinesthelifsessessiondata、setinseconds.1)it'sconfiguredinphp.iniorviaini_set()。 2)AbalanceSneededToAvoidPerformanceIssues andunexpectedLogouts.3)php'sgarbagecollectionisisprobabilistic、影響を受けたBygc_probabi

PHPでは、session_name()関数を使用してセッション名を構成できます。特定の手順は次のとおりです。1。session_name()関数を使用して、session_name( "my_session")などのセッション名を設定します。 2。セッション名を設定した後、session_start()を呼び出してセッションを開始します。セッション名の構成は、複数のアプリケーション間のセッションデータの競合を回避し、セキュリティを強化することができますが、セッション名の一意性、セキュリティ、長さ、設定タイミングに注意してください。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

ZendStudio 13.5.1 Mac
強力な PHP 統合開発環境

MantisBT
Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

メモ帳++7.3.1
使いやすく無料のコードエディター

mPDF
mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。
