スレッド間のコラボレーション。たとえば、最も古典的な生産者と消費者のモデルです。キューがいっぱいの場合、生産者はキューに商品を投入し続ける前に、キューにスペースができるまで待つ必要があります。待機期間中、生産者は重要なリソースを解放する必要があります。つまり、キュー)の占有権。なぜなら、生産者が重要なリソースを占有する権利を解放しない場合、消費者はキュー内の商品を消費できず、キューにスペースがなくなり、生産者は無期限に待機することになるからです。したがって、通常の状況では、キューがいっぱいになると、プロデューサーは重要なリソースを占有する権利を引き渡して一時停止状態に入るように求められます。次に、消費者が商品を消費するのを待ち、消費者はキューに空きがあることを生産者に通知します。同様に、キューが空の場合、コンシューマは、キューに項目があることをプロデューサから通知されるまで待つ必要があります。この相互通信のプロセスがスレッド間の協力です。
wait()、notify()、およびnotifyAll()
[code]/** * Wakes up a single thread that is waiting on this object's * monitor. If any threads are waiting on this object, one of them * is chosen to be awakened. The choice is arbitrary and occurs at * the discretion of the implementation. A thread waits on an object's * monitor by calling one of the wait methods */ public final native void notify(); /** * Wakes up all threads that are waiting on this object's monitor. A * thread waits on an object's monitor by calling one of the * wait methods. */ public final native void notifyAll(); /** * Causes the current thread to wait until either another thread invokes the * {@link java.lang.Object#notify()} method or the * {@link java.lang.Object#notifyAll()} method for this object, or a * specified amount of time has elapsed. * <p> * The current thread must own this object's monitor. */ public final native void wait(long timeout) throws InterruptedException;
1) wait()、notify()、およびnotifyAll()メソッドはローカルメソッドであり最終メソッドであり、オーバーライドできません。
2) オブジェクトの wait() メソッドを呼び出すと、現在のスレッドがブロックされる可能性があり、現在のスレッドはこのオブジェクトのモニター (つまり、ロック) を所有する必要があります
3) オブジェクトの Notice() メソッドを呼び出すと、オブジェクトをウェイクアップできるこのオブジェクトを待機しているスレッドの監視。このオブジェクトの監視を待機しているスレッドが複数ある場合、そのうちの 1 つだけを起動できます。
4) NoticeAll() メソッドを呼び出すと、このオブジェクトの監視を待機しているすべてのスレッドを起動できます。 object;
友人の中には次のような疑問があるかもしれません: これら 3 つのメソッドは Thread クラスで宣言されず、Object クラスで宣言されているのはなぜですか (もちろん、Thread クラスは Object クラスを継承しているため、Thread は 3 つのメソッドを呼び出すこともできます)。 )?実際、この問題は非常に単純です。各オブジェクトにはモニター (つまり、ロック) があるため、現在のスレッドがオブジェクトのロックを待っている場合は、当然、このオブジェクトを通じて操作する必要があります。現在のスレッドを使用して操作する代わりに、現在のスレッドが複数のスレッドのロックを待機している可能性があるため、スレッドを介して操作するのは非常に複雑になります。
上で述べたように、オブジェクトの wait() メソッドが呼び出される場合、現在のスレッドはこのオブジェクトのモニター (つまりロック) を所有している必要があるため、wait() メソッドは同期ブロックまたは同期メソッド (同期ブロックまたは同期メソッド)。
オブジェクトの wait() メソッドを呼び出すことは、現在のスレッドにこのオブジェクトのモニターを引き渡して待機状態に入り、その後にこのオブジェクトのロックが再度取得されるのを待つことと同じです (sleep メソッドThread クラスは、現在のスレッドに一定期間実行を一時停止させ、他のスレッドに実行を継続する機会を与えますが、オブジェクトのロックは解放しません)。オブジェクトのモニターを複数のスレッドが待機している場合、そのうちの 1 つのスレッドのみが起動され、どのスレッドが起動されるかは不明です。
同様に、オブジェクトのnotify()メソッドを呼び出す場合、現在のスレッドはこのオブジェクトのモニターも所有している必要があるため、notify()メソッドの呼び出しは同期ブロックまたは同期メソッド(同期ブロックまたは同期メソッド)で行う必要があります。 。
nofityAll()メソッドは、notify()メソッドとは異なり、オブジェクトの監視を待機しているすべてのスレッドをウェイクアップできます。
ここで注意すべき点が 1 つあります。notify() メソッドと NotifyAll() メソッドは、オブジェクトのモニターを待機しているスレッドを起動するだけであり、どのスレッドがモニターを取得できるかは決定しません。
簡単な例を挙げます。 Thread1、Thread2、Thread3 という 3 つのスレッドがあり、すべてオブジェクト objectA のモニターを待機しているとします。この時点で、Thread4 がオブジェクト objectA のモニターを所有しています。その後、Thread4 で objectA.notify() メソッドが呼び出されます。 Thread1、Thread2、Thread3 は 1 つだけ起動できます。目覚めたからといって、objectA のモニターがすぐに取得されるわけではないことに注意してください。 objectA.notifyAll() メソッドが Thread4 で呼び出された場合、Thread1、Thread2、および Thread3 の 3 つのスレッドが起動され、次にどのスレッドが objectA のモニターを取得できるかは、オペレーティング システムのスケジューリングによって決まります。
上記の点に特に注意してください。スレッドが起動されても、notify() または NoticeAll() を呼び出して同期ブロックを終了し、オブジェクトのロックを解放した後でのみ、オブジェクトのモニターを取得できるわけではありません。スレッドは実行用のロックを取得します。
[code]public class Test { public static Object object = new Object(); public static void main(String[] args) { Thread1 thread1 = new Thread1(); Thread2 thread2 = new Thread2(); thread1.start(); try { Thread.sleep(200); } catch (InterruptedException e) { e.printStackTrace(); } thread2.start(); } static class Thread1 extends Thread{ @Override public void run() { synchronized (object) { try { object.wait(); } catch (InterruptedException e) { } System.out.println("线程"+Thread.currentThread().getName()+"获取到了锁"); } } } static class Thread2 extends Thread{ @Override public void run() { synchronized (object) { object.notify(); System.out.println("线程"+Thread.currentThread().getName()+"调用了object.notify()"); } System.out.println("线程"+Thread.currentThread().getName()+"释放了锁"); } } }
Condition
Conditionは、従来のオブジェクトのwait()とnotify()を置き換えて、スレッド間の連携を実現するために使用されます。スレッド間のコラボレーションを実現するには、Condition1 の await() と signal() を使用する方が安全かつ効率的です。したがって、一般的には、Condition を使用することをお勧めします。Condition はインターフェイスであり、基本的なメソッドは await() メソッドと signal() メソッドです。
Condition は Lock インターフェイスに依存し、Condition を生成する基本コードは lock.newCondition( )
Call Condition の await () メソッドと signal() メソッドはロック保護内にある必要があります。つまり、lock.lock() と lock.unlock の間で使用する必要があります
Conditon中的await()对应Object的wait(); Condition中的signal()对应Object的notify(); Condition中的signalAll()对应Object的notifyAll()。
[code]public class Test { private int queueSize = 10; private PriorityQueue<Integer> queue = new PriorityQueue<Integer>(queueSize); public static void main(String[] args) { Test test = new Test(); Producer producer = test.new Producer(); Consumer consumer = test.new Consumer(); producer.start(); consumer.start(); } class Consumer extends Thread{ @Override public void run() { consume(); } private void consume() { while(true){ synchronized (queue) { while(queue.size() == 0){ try { System.out.println("队列空,等待数据"); queue.wait(); } catch (InterruptedException e) { e.printStackTrace(); queue.notify(); } } queue.poll(); //每次移走队首元素 queue.notify(); System.out.println("从队列取走一个元素,队列剩余"+queue.size()+"个元素"); } } } } class Producer extends Thread{ @Override public void run() { produce(); } private void produce() { while(true){ synchronized (queue) { while(queue.size() == queueSize){ try { System.out.println("队列满,等待有空余空间"); queue.wait(); } catch (InterruptedException e) { e.printStackTrace(); queue.notify(); } } queue.offer(1); //每次插入一个元素 queue.notify(); System.out.println("向队列取中插入一个元素,队列剩余空间:"+(queueSize-queue.size())); } } } } }
[code]public class Test { private int queueSize = 10; private PriorityQueue<Integer> queue = new PriorityQueue<Integer>(queueSize); private Lock lock = new ReentrantLock(); private Condition notFull = lock.newCondition(); private Condition notEmpty = lock.newCondition(); public static void main(String[] args) { Test test = new Test(); Producer producer = test.new Producer(); Consumer consumer = test.new Consumer(); producer.start(); consumer.start(); } class Consumer extends Thread{ @Override public void run() { consume(); } private void consume() { while(true){ lock.lock(); try { while(queue.size() == 0){ try { System.out.println("队列空,等待数据"); notEmpty.await(); } catch (InterruptedException e) { e.printStackTrace(); } } queue.poll(); //每次移走队首元素 notFull.signal(); System.out.println("从队列取走一个元素,队列剩余"+queue.size()+"个元素"); } finally{ lock.unlock(); } } } } class Producer extends Thread{ @Override public void run() { produce(); } private void produce() { while(true){ lock.lock(); try { while(queue.size() == queueSize){ try { System.out.println("队列满,等待有空余空间"); notFull.await(); } catch (InterruptedException e) { e.printStackTrace(); } } queue.offer(1); //每次插入一个元素 notEmpty.signal(); System.out.println("向队列取中插入一个元素,队列剩余空间:"+(queueSize-queue.size())); } finally{ lock.unlock(); } } } } }
以上就是java-并发-线程间协作的两种方式:wait、notify、notifyAll和Condition的内容,更多相关内容请关注PHP中文网(www.php.cn)!
相关文章:

javaispopularforsoss-platformdesktopapplicationsduetoits "writeonce、runaynay" philosophy.1)itusesbytecodatiTatrunnanyjvm-adipplatform.2)ライブラリリケンディンガンドジャヴァフククレアティック - ルルクリス

Javaでプラットフォーム固有のコードを作成する理由には、特定のオペレーティングシステム機能へのアクセス、特定のハードウェアとの対話、パフォーマンスの最適化が含まれます。 1)JNAまたはJNIを使用して、Windowsレジストリにアクセスします。 2)JNIを介してLinux固有のハードウェアドライバーと対話します。 3)金属を使用して、JNIを介してMacOSのゲームパフォーマンスを最適化します。それにもかかわらず、プラットフォーム固有のコードを書くことは、コードの移植性に影響を与え、複雑さを高め、パフォーマンスのオーバーヘッドとセキュリティのリスクをもたらす可能性があります。

Javaは、クラウドネイティブアプリケーション、マルチプラットフォームの展開、および言語間の相互運用性を通じて、プラットフォームの独立性をさらに強化します。 1)クラウドネイティブアプリケーションは、GraalvmとQuarkusを使用してスタートアップ速度を向上させます。 2)Javaは、埋め込みデバイス、モバイルデバイス、量子コンピューターに拡張されます。 3)Graalvmを通じて、JavaはPythonやJavaScriptなどの言語とシームレスに統合して、言語間の相互運用性を高めます。

Javaの強力なタイプ化されたシステムは、タイプの安全性、統一タイプの変換、多型を通じてプラットフォームの独立性を保証します。 1)タイプの安全性は、コンパイル時間でタイプチェックを実行して、ランタイムエラーを回避します。 2)統一された型変換ルールは、すべてのプラットフォームで一貫しています。 3)多型とインターフェイスメカニズムにより、コードはさまざまなプラットフォームで一貫して動作します。

JNIはJavaのプラットフォームの独立を破壊します。 1)JNIは特定のプラットフォームにローカルライブラリを必要とします。2)ローカルコードをターゲットプラットフォームにコンパイルおよびリンクする必要があります。3)異なるバージョンのオペレーティングシステムまたはJVMは、異なるローカルライブラリバージョンを必要とする場合があります。

新しいテクノロジーは、両方の脅威をもたらし、Javaのプラットフォームの独立性を高めます。 1)Dockerなどのクラウドコンピューティングとコンテナ化テクノロジーは、Javaのプラットフォームの独立性を強化しますが、さまざまなクラウド環境に適応するために最適化する必要があります。 2)WebAssemblyは、Graalvmを介してJavaコードをコンパイルし、プラットフォームの独立性を拡張しますが、パフォーマンスのために他の言語と競合する必要があります。

JVMの実装が異なると、プラットフォームの独立性が得られますが、パフォーマンスはわずかに異なります。 1。OracleHotspotとOpenJDKJVMは、プラットフォームの独立性で同様に機能しますが、OpenJDKは追加の構成が必要になる場合があります。 2。IBMJ9JVMは、特定のオペレーティングシステムで最適化を実行します。 3. Graalvmは複数の言語をサポートし、追加の構成が必要です。 4。AzulzingJVMには、特定のプラットフォーム調整が必要です。

プラットフォームの独立性により、開発コストが削減され、複数のオペレーティングシステムで同じコードセットを実行することで開発時間を短縮します。具体的には、次のように表示されます。1。開発時間を短縮すると、1セットのコードのみが必要です。 2。メンテナンスコストを削減し、テストプロセスを統合します。 3.展開プロセスを簡素化するための迅速な反復とチームコラボレーション。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

PhpStorm Mac バージョン
最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン

mPDF
mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

ホットトピック









