単純な選択ソート: (最小値を選択して最初に配置し、その後、最初の値を後方に移動するなど) 最初の値と後続の値を 1 つずつ比較し、毎回最小値を先頭に配置します。 Post-advance に面する最初の値 (つまり、最初に選択された値は最小値であり、比較には参加しなくなり、比較の数は 1 つ減ります)
複雑さ: レコードの移動に必要な操作の数は 0--3(n-1) 未満です。レコードの最初の配置に関係なく、キーワード間で必要な比較の数は同じであり、n(n-1)/2 であり、合計の時間計算量は O( n2);
空間計算量 O(1)
アルゴリズムの改善: すべての比較は最小値を最初の位置に置くため、最後まで比較して最小値を見つけて、それを最初の位置に直接置くことができます。無意味な交換操作や移動操作が不要になります。また、方向を変更して、最後のビットを前のビットと比較して、毎回最大値が下に下がり、最後のビットが前に進むようにすることもできます。
JAVA ソース コード:
public static void selectSort(Date[] days) { int min; Date temp; for (int i = 0; i < days.length; i++) { min = i; for (int j = min + 1; j < days.length; j++) { if (days[min].compare(days[j]) > 0) { min = j; } } if (min != i) { temp = days[i]; days[i] = days[min]; days[min] = temp; } } } class Date { int year, month, day; Date(int y, int m, int d) { year = y; month = m; day = d; } public int compare(Date date) { return year > date.year ? 1 : year < date.year ? -1 : month > date.month ? 1 : month < date.month ? -1 : day > date.day ? 1 : day < date.day ? -1 : 0; } public void print() { System.out.println(year + " " + month + " " + day); } }
単純選択ソート:
単純選択ソートはバブル ソートに似ており、毎回残りの要素セットから最大の値を選択して現在の位置に埋め込みます。唯一の違いは、バブル ソートは要素が現在の値より小さい (または大きい) ことが判明するたびに要素の位置を交換するのに対し、単純選択ソートは残りの要素の中から最も高い値を選択し、データを現在の値と交換することです。位置。
例えば、要素セット R={37, 40, 38, 42, 461, 5, 7, 9, 12} の場合
最初のソートでは、37 が 5 と直接交換されて、新しいシーケンス R1= が形成されます。 {5 ,40,38,42,461,37,7,9,12}
2 番目のソート パス: 40 が 7 と直接交換されて、新しいシーケンス R2={5,7,38,42,461,37,40, 9, 12}
これを最後の要素まで続けます(注: ソートの 2 回目のパスでは、38 は 42 より小さいですが、データは交換されません)。
以下は、単純選択ソートの Java 実装バージョンです:
public static void selectionSort(int[] data) { if (data == null || data.length <= 1) return; int i, j, value, minPos, len = data.length; int outer = len - 1, tmp; for (i = 0; i < outer; i++) { value = data[i]; minPos = -1; for (j = i + 1; j < len; j++) { if (data[j] < value) { minPos = j; value = data[j]; } } if (minPos != -1) { tmp = data[i]; data[i] = value; data[minPos] = tmp; } // for (int k = 0; k < len; k++) { // System.out.print(data[k] + " , "); // } // System.out.println(); } } public static void main(String[] args) { int[] coll = { 37, 40, 38, 42, 461, 5, 7, 9, 12 }; selectionSort(coll); for (int i = 0; i < coll.length; i++) { System.out.print(coll[i] + " , "); } }
ツリー選択ソート (ツリー選択ソート)
単純選択ソートと比較して、ツリー選択ソート アルゴリズムは、空間と時間を交換する典型的なアルゴリズムです。このアイデアは、ソートされた N 個の要素を処理し、比較的小さな (n+1)/2 数値を構築し、次に要素が 1 つだけになるまで比較的小さな [n+1]/4 数値を構築することです。完全なバイナリ ツリーに構築されます。
ソートするときは、その要素が最小であるため、最小の要素を取り出し、その要素を「最大値」に置き換えて、完全な二分木を調整します。
以下はツリー選択ソートの Java 実装です:
public static void treeSelectionSort(int[] data) { if (data == null || data.length <= 1) return; int len = data.length , low = 0 , i , j; // add Auxiliary Space int[] tmp = new int[2*len -1]; int tSize = tmp.length; //construct a tree for(i =len-1 , j=tmp.length-1;i >=0 ;i--,j--){ tmp[j]=data[i]; } for(i = tSize -1 ; i > 0 ; i-=2){ tmp[(i-1)/2] = tmp[i] > tmp[i-1]? tmp[i-1]:tmp[i]; } //end //remove the minimum node. while(low < len){ data[low++] = tmp[0]; for(j=tSize-1;tmp[j]!=tmp[0];j--); tmp[j] = Integer.MAX_VALUE; while(j > 0){ if(j%2 == 0){ //如果是右节点 tmp[(j-1)/2] = tmp[j] > tmp[j-1]?tmp[j-1]:tmp[j]; j = (j-1)/2; }else{ //如果是左节点 tmp[j/2]=tmp[j] > tmp[j+1]? tmp[j+1]:tmp[j]; j = j/2; } } } }
完全なバイナリ ツリーを構築する場合、N 要素のセットには 2*N -1 の補助スペースが必要です。
コード:
while(j > 0){ if(j%2 == 0){ //如果是右节点 tmp[(j-1)/2] = tmp[j] > tmp[j-1]?tmp[j-1]:tmp[j]; j = (j-1)/2; }else{ //如果是左节点 tmp[j/2]=tmp[j] > tmp[j+1]? tmp[j+1]:tmp[j]; j = j/2; } }
は、新しい集合の最小値の再帰的構築を実現します。
JAVA の単純な選択ソート アルゴリズムの原理と実装に関連するその他の記事については、PHP 中国語 Web サイトに注目してください。

javaispopularforsoss-platformdesktopapplicationsduetoits "writeonce、runaynay" philosophy.1)itusesbytecodatiTatrunnanyjvm-adipplatform.2)ライブラリリケンディンガンドジャヴァフククレアティック - ルルクリス

Javaでプラットフォーム固有のコードを作成する理由には、特定のオペレーティングシステム機能へのアクセス、特定のハードウェアとの対話、パフォーマンスの最適化が含まれます。 1)JNAまたはJNIを使用して、Windowsレジストリにアクセスします。 2)JNIを介してLinux固有のハードウェアドライバーと対話します。 3)金属を使用して、JNIを介してMacOSのゲームパフォーマンスを最適化します。それにもかかわらず、プラットフォーム固有のコードを書くことは、コードの移植性に影響を与え、複雑さを高め、パフォーマンスのオーバーヘッドとセキュリティのリスクをもたらす可能性があります。

Javaは、クラウドネイティブアプリケーション、マルチプラットフォームの展開、および言語間の相互運用性を通じて、プラットフォームの独立性をさらに強化します。 1)クラウドネイティブアプリケーションは、GraalvmとQuarkusを使用してスタートアップ速度を向上させます。 2)Javaは、埋め込みデバイス、モバイルデバイス、量子コンピューターに拡張されます。 3)Graalvmを通じて、JavaはPythonやJavaScriptなどの言語とシームレスに統合して、言語間の相互運用性を高めます。

Javaの強力なタイプ化されたシステムは、タイプの安全性、統一タイプの変換、多型を通じてプラットフォームの独立性を保証します。 1)タイプの安全性は、コンパイル時間でタイプチェックを実行して、ランタイムエラーを回避します。 2)統一された型変換ルールは、すべてのプラットフォームで一貫しています。 3)多型とインターフェイスメカニズムにより、コードはさまざまなプラットフォームで一貫して動作します。

JNIはJavaのプラットフォームの独立を破壊します。 1)JNIは特定のプラットフォームにローカルライブラリを必要とします。2)ローカルコードをターゲットプラットフォームにコンパイルおよびリンクする必要があります。3)異なるバージョンのオペレーティングシステムまたはJVMは、異なるローカルライブラリバージョンを必要とする場合があります。

新しいテクノロジーは、両方の脅威をもたらし、Javaのプラットフォームの独立性を高めます。 1)Dockerなどのクラウドコンピューティングとコンテナ化テクノロジーは、Javaのプラットフォームの独立性を強化しますが、さまざまなクラウド環境に適応するために最適化する必要があります。 2)WebAssemblyは、Graalvmを介してJavaコードをコンパイルし、プラットフォームの独立性を拡張しますが、パフォーマンスのために他の言語と競合する必要があります。

JVMの実装が異なると、プラットフォームの独立性が得られますが、パフォーマンスはわずかに異なります。 1。OracleHotspotとOpenJDKJVMは、プラットフォームの独立性で同様に機能しますが、OpenJDKは追加の構成が必要になる場合があります。 2。IBMJ9JVMは、特定のオペレーティングシステムで最適化を実行します。 3. Graalvmは複数の言語をサポートし、追加の構成が必要です。 4。AzulzingJVMには、特定のプラットフォーム調整が必要です。

プラットフォームの独立性により、開発コストが削減され、複数のオペレーティングシステムで同じコードセットを実行することで開発時間を短縮します。具体的には、次のように表示されます。1。開発時間を短縮すると、1セットのコードのみが必要です。 2。メンテナンスコストを削減し、テストプロセスを統合します。 3.展開プロセスを簡素化するための迅速な反復とチームコラボレーション。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

ZendStudio 13.5.1 Mac
強力な PHP 統合開発環境

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

PhpStorm Mac バージョン
最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

ホットトピック









