検索
ホームページJava&#&チュートリアル10 個の JAVA ソート アルゴリズムの例

並べ替えアルゴリズムは多数あるため、特定のシナリオでどれを使用するかが重要です。適切なアルゴリズムを選択するには、次の基準を推奨される順序で考慮することができます:
(1) 実行時間
(2) ストレージ容量
(3) プログラミング労力
データ量が少ない場合、(1) の差) (2) はありません。大量のデータの場合は (3) が主な考慮事項であり、(1) が最優先です。

1. バブルソート

void BubbleSortArray() 
{ 
      for(int i=1;i<n;i++) 
      { 
        for(int j=0;i<n-i;j++) 
         { 
              if(a[j]>a[j+1])//比较交换相邻元素 
               { 
                   int temp; 
                   temp=a[j]; a[j]=a[j+1]; a[j+1]=temp; 
               } 
         } 
      } 
}

効率 O(n²)、小さなリストのソートに適しています。
2. 選択ソート

void SelectSortArray() 
{ 
    int min_index; 
    for(int i=0;i<n-1;i++) 
    { 
         min_index=i; 
         for(int j=i+1;j<n;j++)//每次扫描选择最小项 
            if(arr[j]<arr[min_index])  min_index=j; 
         if(min_index!=i)//找到最小项交换,即将这一项移到列表中的正确位置 
         { 
             int temp; 
             temp=arr[i]; arr[i]=arr[min_index]; arr[min_index]=temp; 
} 
} 
}

効率は O(n²) で、小さなリストのソートに適しています。

3. 挿入ソート

void InsertSortArray() 
{ 
for(int i=1;i<n;i++)//循环从第二个数组元素开始,因为arr[0]作为最初已排序部分 
{ 
    int temp=arr[i];//temp标记为未排序第一个元素 
    int j=i-1; 
while (j>=0 && arr[j]>temp)/*将temp与已排序元素从小到大比较,寻找temp应插入的位置*/ 
{ 
    arr[j+1]=arr[j]; 
    j--; 
} 
arr[j+1]=temp; 
} 
}

最も効率が良いのは O(n)、最も悪い効率は O(n²) で、これは小さなリストのソートに適しています
リストが基本的に順序付けされている場合。 、バブルや選択よりも挿入ソートの方が効率的です。

void ShellSortArray() 
{ 
  for(int incr=3;incr<0;incr--)//增量递减,以增量3,2,1为例 
{ 
       for(int L=0;L<(n-1)/incr;L++)//重复分成的每个子列表 
{ 
   for(int i=L+incr;i<n;i+=incr)//对每个子列表应用插入排序 
   { 
      int temp=arr[i]; 
      int j=i-incr; 
      while(j>=0&&arr[j]>temp) 
      { 
          arr[j+incr]=arr[j]; 
          j-=incr; 
} 
arr[j+incr]=temp; 
} 
} 
}

小さなリストの並べ替えに適しています。
増分値の初期サイズに応じて、効率は O(nlog2^n)~O(n^1.5) と推定されます。増分値が 2 の累乗の場合、次のパスで同じ要素が再度比較されるため、増分値には素数を使用することをお勧めします。
シェルソートは挿入ソートを改善し、比較の数を減らします。並べ替え処理中に要素が前後に飛び移る可能性があるため、不安定な並べ替えとなります。

void MergeSort(int low,int high) 
{ 
   if(low>=high)   return;//每个子列表中剩下一个元素时停止 
   else int mid=(low+high)/2;/*将列表划分成相等的两个子列表,若有奇数个元素,则在左边子列表大于右侧子列表*/ 
   MergeSort(low,mid);//子列表进一步划分 
   MergeSort(mid+1,high); 
   int [] B=new int [high-low+1];//新建一个数组,用于存放归并的元素 
   for(int i=low,j=mid+1,k=low;i<=mid && j<=high;k++)/*两个子列表进行排序归并,直到两个子列表中的一个结束*/ 
   { 
       if (arr[i]<=arr[j];) 
{ 
    B[k]=arr[i]; 
    I++; 
} 
else
    { B[k]=arr[j]; j++; } 
} 
for(   ;j<=high;j++,k++)//如果第二个子列表中仍然有元素,则追加到新列表 
      B[k]=arr[j]; 
   for(   ;i<=mid;i++,k++)//如果在第一个子列表中仍然有元素,则追加到新列表中 
      B[k]=arr[i]; 
   for(int z=0;z<high-low+1;z++)//将排序的数组B的 所有元素复制到原始数组arr中 
      arr[z]=B[z]; 
}

効率 O(nlogn)、統合された最高効率、平均効率、最悪の場合の効率の間に差はありません。
分割統治法に基づいて大きなリストを並べ替えるのに適しています。

/*快速排序的算法思想:选定一个枢纽元素,对待排序序列进行分割,分割之后的序列一个部分小于枢纽元素,一个部分大于枢纽元素,再对这两个分割好的子序列进行上述的过程。*/                  void swap(int a,int b){int t;t =a ;a =b ;b =t ;} 
        int Partition(int [] arr,int low,int high) 
        { 
            int pivot=arr[low];//采用子序列的第一个元素作为枢纽元素 
            while (low < high) 
            { 
                //从后往前栽后半部分中寻找第一个小于枢纽元素的元素 
                while (low < high && arr[high] >= pivot) 
                { 
                    --high; 
                } 
                //将这个比枢纽元素小的元素交换到前半部分 
                swap(arr[low], arr[high]); 
                //从前往后在前半部分中寻找第一个大于枢纽元素的元素 
                while (low <high &&arr [low ]<=pivot ) 
                { 
                    ++low ; 
                } 
                swap (arr [low ],arr [high ]);//将这个枢纽元素大的元素交换到后半部分 
            } 
            return low ;//返回枢纽元素所在的位置 
        } 
        void QuickSort(int [] a,int low,int high) 
        { 
            if (low <high ) 
            { 
                int n=Partition (a ,low ,high ); 
                QuickSort (a ,low ,n ); 
                QuickSort (a ,n +1,high ); 
            } 
        }

平均効率は O(nlogn) で、大きなリストのソートに適しています。
このアルゴリズムの合計時間はピボット値の位置によって異なります。最初の要素をピボットとして選択すると、最悪の場合の効率が O(n²) になる可能性があります。基本的に数字が整っていれば効率は最悪になります。オプションの中間値をピボットとして使用すると、効率は O(nlogn) になります。
分割統治法に基づいています。

7. ヒープのソート
最大ヒープ: 後者の非終端ノードのキーワードは、その左と右の子のキーワード以上です。このとき、先頭のノードのキーワードです。 heap はシーケンス全体の中で最大です。
考え:
(1) i=l とし、temp=kl とする
(2) i の左の子、j=2i+1 を計算する
(3) j(4) kj と kj+1 を比較します。kj+1>kj の場合は j=j+1 とし、そうでない場合は j を変更しません。
(5) temp と kj を比較します。 if kj>temp, 次に、ki を kj に等しいとし、i=j,j=2i+1 として (3) に進み、それ以外の場合は (6) に進みます。
(6) ki を temp に等しくすると、終了します。

void HeapSort(SeqIAst R) 

    {
    //对R[1..n]进行堆排序,不妨用R[0]做暂存单元   
    int I;    BuildHeap(R);
    //将R[1-n]建成初始堆for(i=n;i>1;i--) //对当前无序区R[1..i]进行堆排序,共做n-1趟。
    {     
    R[0]=R[1]; R[1]=R[i]; R[i]=R[0]; //将堆顶和堆中最后一个记录交换      Heapify(R,1,i-1);  //将R[1..i-1]重新调整为堆,仅有R[1]可能违反堆性质   
    }   
    }

ヒープのソート時間は主に、初期ヒープの確立と繰り返しヒープを再構築する時間のオーバーヘッドで構成されます。どちらも Heapify を呼び出すことで実装されます。
ヒープソートの最悪の時間計算量は O(nlgn) です。ヒープ ソートの平均パフォーマンスは最悪のパフォーマンスに近くなります。初期ヒープを構築するには多数の比較が必要なため、ヒープのソートはレコード数が少ないファイルには適していません。ヒープ ソートはインプレース ソートであり、補助領域は O(1) であり、不安定なソート方法です。

ヒープ ソートと直接挿入ソートの違い:
直接選択ソートでは、R[1..n] から最小のキーワードを持つレコードを選択するために、n-1 個の比較を行う必要があり、その後 R[ 2.. n] 最小のキーワードを持つレコードを選択するには、n-2 回の比較が必要です。実際、次の n-2 比較では、前の n-1 比較で多くの比較が行われた可能性がありますが、これらの比較結果は前のソートでは保持されなかったため、後のソートで繰り返されました。実行されました。
ヒープソートは一部の比較結果をツリー構造で保存できるため、比較の回数を減らすことができます。


8. トポロジカルソート
例: 学生の選択科目の配置順序
トポロジカルソート: 有向グラフ内の頂点を相互の優先関係に従って線形シーケンスに配置するプロセス。
方法:
有向グラフ内の先行者のない頂点を選択して出力します
頂点とその頂点で終わるすべての円弧をグラフから削除します
すべての頂点が出力される(位相ソートが成功する)まで上記の2つの手順を繰り返します、またはグラフ内に先行者のない頂点がなくなるまで (グラフ内にサイクルが存在します)。

void TopologicalSort()/*输出拓扑排序函数。若G无回路,则输出G的顶点的一个拓扑序列并返回OK,否则返回ERROR*/ 
{ 
      int indegree[M]; 
      int i,k,j; 
      char n; 
      int count=0; 
      Stack thestack; 
      FindInDegree(G,indegree);//对各顶点求入度indegree[0....num] 
      InitStack(thestack);//初始化栈 
      for(i=0;i<G.num;i++) 
          Console.WriteLine("结点"+G.vertices[i].data+"的入度为"+indegree[i]); 
      for(i=0;i<G.num;i++) 
      { 
           if(indegree[i]==0) 
              Push(thestack.vertices[i]); 
      } 
      Console.Write("拓扑排序输出顺序为:"); 
      while(thestack.Peek()!=null) 
      { 
               Pop(thestack.Peek()); 
               j=locatevex(G,n); 
               if (j==-2) 
                  { 
                         Console.WriteLine("发生错误,程序结束。"); 
                         exit(); 
                  } 
                Console.Write(G.vertices[j].data); 
                count++; 
                for(p=G.vertices[j].firstarc;p!=NULL;p=p.nextarc) 
                { 
                     k=p.adjvex; 
                     if (!(--indegree[k])) 
                         Push(G.vertices[k]); 
                } 
      } 
      if (count<G.num) 
          Cosole.WriteLine("该图有环,出现错误,无法排序。"); 
      else
          Console.WriteLine("排序成功。"); 
}

アルゴリズムの時間計算量は O(n+e) です。

9. チャンピオンシップの並べ替え
チャンピオンシップの並べ替えのアルゴリズムの考え方は、スポーツ競技のアルゴリズムと似ています。
まず、n 個のデータ要素を 2 つのグループにグループ化し、それぞれをキーワードごとに比較し、n/2 の比較勝者 (より小さいキーワードを持つもの) を取得します。これは、比較の最初のステップの結果として保持されます。
次に、n/ 2 つのデータ。次に、要素は 2 つのグループにグループ化され、キーワードに従って比較されます...など、最小のキーワードを持つデータ要素が選択されるまで続きます。

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <math.h> 
#define SIZE 100000 
#define MAX 1000000 
struct node 
{ 
 long num;//关键字 
 char str[10]; 
 int lastwin;//最后胜的对手 
 int killer;//被击败的对手 
 long times;//比赛次数 
}data[SIZE]; 
long CompareNum=0; 
long ExchangeNum=0; 
long Read(char name[])//读取文件a.txt中的数据,并存放在数组data[]中;最后返回数据的个数 
{ 
 FILE *fp; 
 long i=1; 
 fp=fopen(name,"rw"); 
 fscanf(fp,"%d%s",&data[i].num,data[i].str); 
 while(!feof(fp)) 
 { 
  i++; 
  fscanf(fp,"%d%s",&data[i].num,data[i].str);  
 } 
 return (i-1); 
} 
long Create(long num)//创建胜者树,返回冠军(最小数)在数组data[]中的下标 
{ 
 int i,j1,j2,max,time=1; 
 long min;//记录当前冠军的下标 
 for(i=1;pow(2,i-1)<num;i++) 

 max=pow(2,i-1);//求叶子结点数目 
 for(i=1;i<=max;i++)//初始化叶子结点 
 { 
  data[i].killer=0; 
  data[i].lastwin=0; 
  data[i].times=0; 
  if(i>num) 
   data[i].num=MAX; 
 } 
 for(i=1;i<=max;i+=2)//第一轮比赛 
 { 
  ++CompareNum; 
  if(data[i].num <= data[i+1].num) 
  { 
   data[i].lastwin = i+1; 
   data[i+1].killer=i; 
   ++data[i].times; 
   ++data[i+1].times; 
   min=i; 
  } 
  else
  { 
   data[i+1].lastwin=i; 
   data[i].killer=i+1; 
   ++data[i].times; 
   ++data[i+1].times; 
   min=i+1; 
  } 
 } 
 j1=j2=0;//记录连续的两个未被淘汰的选手的下标 
 while(time <= (log(max)/log(2)))//进行淘汰赛 
 { 
  for(i=1;i<=max;i++) 
  { 
   if(data[i].times==time && data[i].killer==0)//找到一名选手 
   { 
    j2=i;//默认其为两选手中的后来的 
    if(j1==0)//如果第一位置是空的,则刚来的选手先来的 
     j1=j2; 
    else//否则刚来的选手是后来的,那么选手都已到场比赛开始 
    { 
     ++CompareNum; 
     if(data[j1].num <= data[j2].num)//先来的选手获胜 
     { 
      data[j1].lastwin = j2;//最后赢的是j2 
      data[j2].killer=j1;//j2是被j1淘汰的 
      ++data[j1].times; 
      ++data[j2].times;//两选手场次均加1  
      min=j1;//最小数下标为j1 
      j1=j2=0;//将j1,j2置0 
     } 
     else//同理 
     { 
      data[j2].lastwin=j1; 
      data[j1].killer=j2; 
      ++data[j1].times; 
      ++data[j2].times;      
      min=j2; 
      j1=j2=0; 
     } 
    } 
   } 

  } 
  time++;//轮数加1 
 } 
 return min;//返回冠军的下标 
} 
void TournamentSort(long num)//锦标赛排序 
{ 
 long tag=Create(num);//返回最小数下标 
 FILE *fp1; 
 fp1=fopen("sort.txt","w+");//为写入创建并打开文件sort.txt 
 while(data[tag].num != MAX)//当最小值不是无穷大时 
 { 
  printf("%d %s\n",data[tag].num,data[tag].str);//输出数据 
  fprintf(fp1,"%d %s\n",data[tag].num,data[tag].str);//写入数据 
  data[tag].num=MAX;//将当前冠军用无穷大替换 
  tag=Create(num);//返回下一个冠军的下标  
 } 
} 
int main() 
{ 
 int num; 
 char name[10]; 
 printf("Input name of the file:"); 
 gets(name); 
 num=Read(name);//读文件 
 TournamentSort(num);//锦标赛排序 
 printf("CompareNum=%d\nExchangeNum=%d\n",CompareNum,ExchangeNum); 
 return 0; 
}

十、基数排序 
基数排序又被称为桶排序。与前面介绍的几种排序方法相比较,基数排序和它们有明显的不同。 
    前面所介绍的排序方法都是建立在对数据元素关键字进行比较的基础上,所以可以称为基于比较的排序; 
    而基数排序首先将待排序数据元素依次“分配”到不同的桶里,然后再把各桶中的数据元素“收集”到一起。 
通过使用对多关键字进行排序的这种“分配”和“收集”的方法,基数排序实现了对多关键字进行排序。 
例: 
    每张扑克牌有两个“关键字”:花色和面值。其大小顺序为: 
    花色:§<¨<©<ª 
    面值:2<3<……<K<A 
    扑克牌的大小先根据花色比较,花色大的牌比花色小的牌大;花色一样的牌再根据面值比较大小。所以,将扑克牌按从小到大的次序排列,可得到以下序列: 
 §2,…,§A,¨2,…,¨A,©2,…,©A,ª2,…,ªA 
    这种排序相当于有两个关键字的排序,一般有两种方法实现。 
    其一:可以先按花色分成四堆(每一堆牌具有相同的花色),然后在每一堆牌里再按面值从小到大的次序排序,最后把已排好序的四堆牌按花色从小到大次序叠放在一起就得到排序的结果。 
其二:可以先按面值排序分成十三堆(每一堆牌具有相同的面值),然后将这十三堆牌按面值从小到大的顺序叠放在一起,再把整副牌按顺序根据花色再分成四堆(每一堆牌已按面值从小到大的顺序有序),最后将这四堆牌按花色从小到大合在一起就得到排序的结果。 
实现方法: 
  最高位优先(Most Significant Digit first)法,简称MSD法:先按k1排序分组,同一组中记录,关键码k1相等,再对各组按k2排序分成子组,之后,对后面的关键码继续这样的排序分组,直到按最次位关键码kd对各子组排序后。再将各组连接起来,便得到一个有序序列。 
  最低位优先(Least Significant Digit first)法,简称LSD法:先从kd开始排序,再对kd-1进行排序,依次重复,直到对k1排序后便得到一个有序序列。 

  using System; 
  using System.Collections.Generic; 
  using System.Linq; 
  using System.Text; 
  namespace LearnSort 
  { 
  class Program 
  { 
  static void Main(string[] args) 
  { 
  int[] arr = CreateRandomArray(10);//产生随机数组 
  Print(arr);//输出数组 
  RadixSort(ref arr);//排序 
  Print(arr);//输出排序后的结果 
  Console.ReadKey(); 
  } 
  public static void RadixSort(ref int[] arr) 
  { 
  int iMaxLength = GetMaxLength(arr); 
  RadixSort(ref arr, iMaxLength); 
  } 
  private static void RadixSort(ref int[] arr, int iMaxLength) 
  { 
  List<int> list = new List<int>();//存放每次排序后的元素 
  List<int>[] listArr = new List<int>[10];//十个桶 
  char currnetChar;//存放当前的字符比如说某个元素123 中的2 
  string currentItem;//存放当前的元素比如说某个元素123 
  for (int i = 0; i < listArr.Length; i++)//给十个桶分配内存初始化。 
  listArr[i] = new List<int>(); 
  for (int i = 0; i < iMaxLength; i++)//一共执行iMaxLength次,iMaxLength是元素的最大位数。 
  { 
  foreach (int number in arr)//分桶 
  { 
  currentItem = number.ToString();//将当前元素转化成字符串 
  try { currnetChar = currentItem[currentItem.Length-i-1]; }//从个位向高位开始分桶 
  catch { listArr[0].Add(number); continue; }//如果发生异常,则将该数压入listArr[0]。比如说5 是没有十位数的,执行上面的操作肯定会发生越界异常的,这正是期望的行为,我们认为5的十位数是0,所以将它压入listArr[0]的桶里。 
  switch (currnetChar)//通过currnetChar的值,确定它压人哪个桶中。 
  { 
  case &#39;0&#39;: listArr[0].Add(number); break; 
  case &#39;1&#39;: listArr[1].Add(number); break; 
  case &#39;2&#39;: listArr[2].Add(number); break; 
  case &#39;3&#39;: listArr[3].Add(number); break; 
  case &#39;4&#39;: listArr[4].Add(number); break; 
  case &#39;5&#39;: listArr[5].Add(number); break; 
  case &#39;6&#39;: listArr[6].Add(number); break; 
  case &#39;7&#39;: listArr[7].Add(number); break; 
  case &#39;8&#39;: listArr[8].Add(number); break; 
  case &#39;9&#39;: listArr[9].Add(number); break; 
  default: throw new Exception("unknow error"); 
  } 
  } 
  for (int j = 0; j < listArr.Length; j++)//将十个桶里的数据重新排列,压入list 
  foreach (int number in listArr[j].ToArray<int>()) 
  { 
  list.Add(number); 
  listArr[j].Clear();//清空每个桶 
  } 
  arr = list.ToArray<int>();//arr指向重新排列的元素 
  //Console.Write("{0} times:",i); 
  Print(arr);//输出一次排列的结果 
  list.Clear();//清空list 
  } 
  } 
  //得到最大元素的位数 
  private static int GetMaxLength(int[] arr) 
  { 
  int iMaxNumber = Int32.MinValue; 
  foreach (int i in arr)//遍历得到最大值 
  { 
  if (i > iMaxNumber) 
  iMaxNumber = i; 
  } 
  return iMaxNumber.ToString().Length;//这样获得最大元素的位数是不是有点投机取巧了... 
  } 
  //输出数组元素 
  public static void Print(int[] arr) 
  { 
  foreach (int i in arr) 
  System.Console.Write(i.ToString()+&#39;\t&#39;); 
  System.Console.WriteLine(); 
  } 
  //产生随机数组。随机数的范围是0到1000。参数iLength指产生多少个随机数 
  public static int[] CreateRandomArray(int iLength) 
  { 
  int[] arr = new int[iLength]; 
  Random random = new Random(); 
  for (int i = 0; i < iLength; i++) 
  arr[i] = random.Next(0,1001); 
  return arr; 
  } 
  } 
  }

基数排序法是属于稳定性的排序,其时间复杂度为O (nlog(r)m),其中r为所采取的基数,而m为堆数,在某些时候,基数排序法的效率高于其它的比较性排序法。

更多十种JAVA排序算法实例相关文章请关注PHP中文网!


声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
JVMは、Javaの「Write and、Run Anywhere」(Wora)機能にどのように貢献しますか?JVMは、Javaの「Write and、Run Anywhere」(Wora)機能にどのように貢献しますか?May 02, 2025 am 12:25 AM

JVMは、バイトコード解釈、プラットフォームに依存しないAPI、動的クラスの負荷を介してJavaのWORA機能を実装します。 2。標準API抽象オペレーティングシステムの違い。 3.クラスは、実行時に動的にロードされ、一貫性を確保します。

Javaの新しいバージョンは、プラットフォーム固有の問題にどのように対処しますか?Javaの新しいバージョンは、プラットフォーム固有の問題にどのように対処しますか?May 02, 2025 am 12:18 AM

Javaの最新バージョンは、JVMの最適化、標準的なライブラリの改善、サードパーティライブラリサポートを通じて、プラットフォーム固有の問題を効果的に解決します。 1)Java11のZGCなどのJVM最適化により、ガベージコレクションのパフォーマンスが向上します。 2)Java9のモジュールシステムなどの標準的なライブラリの改善は、プラットフォーム関連の問題を削減します。 3)サードパーティライブラリは、OpenCVなどのプラットフォーム最適化バージョンを提供します。

JVMによって実行されたバイトコード検証のプロセスを説明します。JVMによって実行されたバイトコード検証のプロセスを説明します。May 02, 2025 am 12:18 AM

JVMのバイトコード検証プロセスには、4つの重要な手順が含まれます。1)クラスファイル形式が仕様に準拠しているかどうかを確認し、2)バイトコード命令の有効性と正確性を確認し、3)データフロー分析を実行してタイプの安全性を確保し、検証の完全性とパフォーマンスのバランスをとる。これらの手順を通じて、JVMは、安全で正しいバイトコードのみが実行されることを保証し、それによりプログラムの完全性とセキュリティを保護します。

プラットフォームの独立性は、Javaアプリケーションの展開をどのように簡素化しますか?プラットフォームの独立性は、Javaアプリケーションの展開をどのように簡素化しますか?May 02, 2025 am 12:15 AM

java'splatformendencealLowsApplicationStorunOperatingSystemwithajvm.1)singlecodebase:writeandcompileonceforallplatforms.2)easyUpdates:updatebytecodeforsimultaneousdeployment.3)テストの実験効果:scalbortffortfforduniverbehaviol.4)

Javaのプラットフォームの独立性は、時間とともにどのように進化しましたか?Javaのプラットフォームの独立性は、時間とともにどのように進化しましたか?May 02, 2025 am 12:12 AM

Javaのプラットフォームの独立性は、JVM、JITコンピレーション、標準化、ジェネリック、ラムダ式、Projectpanamaなどのテクノロジーを通じて継続的に強化されています。 1990年代以来、Javaは基本的なJVMから高性能モダンJVMに進化し、さまざまなプラットフォームでのコードの一貫性と効率を確保しています。

Javaアプリケーションでプラットフォーム固有の問題を緩和するためのいくつかの戦略は何ですか?Javaアプリケーションでプラットフォーム固有の問題を緩和するためのいくつかの戦略は何ですか?May 01, 2025 am 12:20 AM

Javaはプラットフォーム固有の問題をどのように軽減しますか? Javaは、JVMおよび標準ライブラリを通じてプラットフォームに依存します。 1)bytecodeとjvmを使用して、オペレーティングシステムの違いを抽象化します。 2)標準のライブラリは、パスクラス処理ファイルパス、CHARSETクラス処理文字エンコードなど、クロスプラットフォームAPIを提供します。 3)最適化とデバッグのために、実際のプロジェクトで構成ファイルとマルチプラットフォームテストを使用します。

Javaのプラットフォームの独立性とマイクロサービスアーキテクチャの関係は何ですか?Javaのプラットフォームの独立性とマイクロサービスアーキテクチャの関係は何ですか?May 01, 2025 am 12:16 AM

java'splatformentencentenhancesmicroservicesecturectureby byofferingdeploymentflexability、一貫性、スケーラビリティ、およびポート可能性。1)展開の展開の展開は、AllosmicRoserviThajvm.2)deploymentflexibility lowsmicroserviceSjvm.2)一貫性のあるAcrossServicessimplisimpligiessdevelisementand

GraalvmはJavaのプラットフォーム独立目標とどのように関係していますか?GraalvmはJavaのプラットフォーム独立目標とどのように関係していますか?May 01, 2025 am 12:14 AM

Graalvmは、Javaのプラットフォームの独立性を3つの方法で強化します。1。言語間の相互運用性、Javaが他の言語とシームレスに相互運用できるようにします。 2。独立したランタイム環境、graalvmnativeimageを介してJavaプログラムをローカル実行可能ファイルにコンパイルします。 3.パフォーマンスの最適化、Graalコンパイラは、Javaプログラムのパフォーマンスと一貫性を改善するための効率的なマシンコードを生成します。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

SecLists

SecLists

SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

Dreamweaver Mac版

Dreamweaver Mac版

ビジュアル Web 開発ツール