ホームページ >バックエンド開発 >Python チュートリアル >ナイーブベイズアルゴリズムのPython実装
アルゴリズムの長所と短所
長所: データが少ない場合でも効果的で、複数カテゴリの問題を処理できます
短所: 入力データの準備方法に敏感です
適用可能なデータ型: 公称データ
アルゴリズムのアイデア:
Naive Bayes
たとえば、メールがスパムかどうかを判断したい場合、わかっているのはメール内の単語の分布であり、スパムメール内で特定の単語が何回出現したか、ベイズの定理を使用して求めることができます。
ナイーブ ベイズ分類器の仮定は、各特徴が同等に重要であるということです。
ベイズ分類は、分類アルゴリズムのクラスの総称であり、ベイズの定理に基づいているため、総称してベイズ分類と呼ばれます。 。
Function
loadDataSet()
データセットを作成します。ここでのデータセットは、フォーラム上のユーザーのコメントを表す、分割された単語で構成される文です。これは、これが呪いであることを意味します
createVocabList()。 dataSet )
これらの文に含まれる単語の数を調べて、単語ベクトルのサイズを決定します
setOfWords2Vec(vocabList, inputSet)
ここでは、文内の単語に基づいて文をベクトルに変換します。 、つまり、単語が存在するかどうかのみを考慮します
bagOfWords2VecMN(vocabList, inputSet)
これは、特定の単語の出現数を考慮して、文をベクトルに変換する別のモデル、多項式モデルです
trainNB0(trainMatrix,trainCategory)
P(i) と P(w[i]|C[1]) と P(w[i]|C[0]) の計算には 2 つのトリックがあります。1 つは、開始分子と分母が異なることです。これらのうちの 1 つが 0 になる確率が 0 になり、全体が 0 になることを防ぐために、すべて 0 に初期化されます。もう 1 つは、精度の問題で結果が 0 になることを防ぐために、後で乗算対数を使用することです
classifyNB( vec2Classify、p0Vec、p1Vec、pClass1)
ベイズの公式に従ってこのベクトルを計算します。 2 つのセットのうちどちらの確率が高いか
#coding=utf-8 from numpy import * def loadDataSet(): postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'], ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'], ['stop', 'posting', 'stupid', 'worthless', 'garbage'], ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'], ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']] classVec = [0,1,0,1,0,1] #1 is abusive, 0 not return postingList,classVec #创建一个带有所有单词的列表 def createVocabList(dataSet): vocabSet = set([]) for document in dataSet: vocabSet = vocabSet | set(document) return list(vocabSet) def setOfWords2Vec(vocabList, inputSet): retVocabList = [0] * len(vocabList) for word in inputSet: if word in vocabList: retVocabList[vocabList.index(word)] = 1 else: print 'word ',word ,'not in dict' return retVocabList #另一种模型 def bagOfWords2VecMN(vocabList, inputSet): returnVec = [0]*len(vocabList) for word in inputSet: if word in vocabList: returnVec[vocabList.index(word)] += 1 return returnVec def trainNB0(trainMatrix,trainCatergory): numTrainDoc = len(trainMatrix) numWords = len(trainMatrix[0]) pAbusive = sum(trainCatergory)/float(numTrainDoc) #防止多个概率的成绩当中的一个为0 p0Num = ones(numWords) p1Num = ones(numWords) p0Denom = 2.0 p1Denom = 2.0 for i in range(numTrainDoc): if trainCatergory[i] == 1: p1Num +=trainMatrix[i] p1Denom += sum(trainMatrix[i]) else: p0Num +=trainMatrix[i] p0Denom += sum(trainMatrix[i]) p1Vect = log(p1Num/p1Denom)#处于精度的考虑,否则很可能到限归零 p0Vect = log(p0Num/p0Denom) return p0Vect,p1Vect,pAbusive def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1): p1 = sum(vec2Classify * p1Vec) + log(pClass1) #element-wise mult p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1) if p1 > p0: return 1 else: return 0 def testingNB(): listOPosts,listClasses = loadDataSet() myVocabList = createVocabList(listOPosts) trainMat=[] for postinDoc in listOPosts: trainMat.append(setOfWords2Vec(myVocabList, postinDoc)) p0V,p1V,pAb = trainNB0(array(trainMat),array(listClasses)) testEntry = ['love', 'my', 'dalmation'] thisDoc = array(setOfWords2Vec(myVocabList, testEntry)) print testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb) testEntry = ['stupid', 'garbage'] thisDoc = array(setOfWords2Vec(myVocabList, testEntry)) print testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb) def main(): testingNB() if __name__ == '__main__': main()