挿入ソートの基本概念: すでに整列したデータ列があり、この整列したデータ列に数値を挿入する必要があるが、このとき、挿入後もデータ列が整列している必要がある。新しいメソッドが使用されます。 挿入ソートの基本的な操作は、ソートされた順序付きデータにデータを挿入し、数値に 1 を加えた新しい順序付きデータを取得することです。少量のデータの場合、ソートの時間計算量は O(n^2) です。安定した選別方法です。挿入アルゴリズムは、並べ替えられる配列を 2 つの部分に分割します。最初の部分には最後の要素を除く配列のすべての要素が含まれ、2 番目の部分にはこの 1 つの要素のみが含まれます。最初の部分がソートされたら、ソートされた最初の部分の位置に最後の要素を挿入します
# -*- encoding: utf-8 -*- def insertion_sort(iterable, cmp=cmp): """插入排序,伪码如下: INSERTION-SORT(A) 1 for j ← 2 to length[A] // 从第二个数开始 2 do key ← A[j] // 该数作为待排序的数 3 ▷ Insert A[j] into the sorted sequence A[1..j-1]. // 将key插入已排序子数组 4 i ← j-1 // key前一位索引 5 while i > 0 and A[i] > key // 前一位存在且大于key时 6 do A[i+1] ← A[i] // 后移一位 7 i ← i-1 // 索引再向前一位 8 A[i+1] ← key // 直到前一位不存在或<=key了,key插入 T(n) = θ(n^2) Args: iterable (Iterator): 可迭代对象。 cmp (Function): 比较函数。默认为内建函数cmp()。 Returns: 一个排序后的列表。 """ if (iterable == None): return None lst = [] # 结果列表 length = len(iterable) for key in iterable: i = len(lst) # 列表长度 # 从末尾往前与key比较,直到不大于key while i > 0 and cmp(lst[i-1], key) > 0: i = i - 1 lst.insert(i, key); # i处插入key return lst if __name__ == '__main__': import random, timeit items = range(10000) random.shuffle(items) def test_sorted(): print(items) sorted_items = sorted(items) print(sorted_items) def test_insertion_sort(): print(items) sorted_items = insertion_sort(items) print(sorted_items) test_methods = [test_sorted, test_insertion_sort] for test in test_methods: name = test.__name__ # test.func_name t = timeit.Timer(name + '()', 'from __main__ import ' + name) print(name + ' takes time : %f' % t.timeit(1))

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

Web開発におけるPythonの主要なアプリケーションには、DjangoおよびFlaskフレームワークの使用、API開発、データ分析と視覚化、機械学習とAI、およびパフォーマンスの最適化が含まれます。 1。DjangoandFlask Framework:Djangoは、複雑な用途の迅速な発展に適しており、Flaskは小規模または高度にカスタマイズされたプロジェクトに適しています。 2。API開発:フラスコまたはdjangorestFrameworkを使用して、Restfulapiを構築します。 3。データ分析と視覚化:Pythonを使用してデータを処理し、Webインターフェイスを介して表示します。 4。機械学習とAI:Pythonは、インテリジェントWebアプリケーションを構築するために使用されます。 5。パフォーマンスの最適化:非同期プログラミング、キャッシュ、コードを通じて最適化

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。

Pythonの実際のアプリケーションには、データ分析、Web開発、人工知能、自動化が含まれます。 1)データ分析では、PythonはPandasとMatplotlibを使用してデータを処理および視覚化します。 2)Web開発では、DjangoおよびFlask FrameworksがWebアプリケーションの作成を簡素化します。 3)人工知能の分野では、TensorflowとPytorchがモデルの構築と訓練に使用されます。 4)自動化に関しては、ファイルのコピーなどのタスクにPythonスクリプトを使用できます。

Pythonは、データサイエンス、Web開発、自動化スクリプトフィールドで広く使用されています。 1)データサイエンスでは、PythonはNumpyやPandasなどのライブラリを介してデータ処理と分析を簡素化します。 2)Web開発では、DjangoおよびFlask Frameworksにより、開発者はアプリケーションを迅速に構築できます。 3)自動化されたスクリプトでは、Pythonのシンプルさと標準ライブラリが理想的になります。

Pythonの柔軟性は、マルチパラダイムサポートと動的タイプシステムに反映されていますが、使いやすさはシンプルな構文とリッチ標準ライブラリに由来しています。 1。柔軟性:オブジェクト指向、機能的および手続き的プログラミングをサポートし、動的タイプシステムは開発効率を向上させます。 2。使いやすさ:文法は自然言語に近く、標準的なライブラリは幅広い機能をカバーし、開発プロセスを簡素化します。

Pythonは、初心者から上級開発者までのすべてのニーズに適した、そのシンプルさとパワーに非常に好まれています。その汎用性は、次のことに反映されています。1)学習と使用が簡単、シンプルな構文。 2)Numpy、Pandasなどの豊富なライブラリとフレームワーク。 3)さまざまなオペレーティングシステムで実行できるクロスプラットフォームサポート。 4)作業効率を向上させるためのスクリプトおよび自動化タスクに適しています。

はい、1日2時間でPythonを学びます。 1.合理的な学習計画を作成します。2。適切な学習リソースを選択します。3。実践を通じて学んだ知識を統合します。これらの手順は、短時間でPythonをマスターするのに役立ちます。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

MantisBT
Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

ZendStudio 13.5.1 Mac
強力な PHP 統合開発環境

Dreamweaver Mac版
ビジュアル Web 開発ツール

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。
