最近、Wikipedia でいくつかのデータ マイニング タスクを完了しました。これは次の部分で構成されます:
enwiki-pages-articles.xml の Wikipedia ダンプを解析する;
カテゴリとページを MongoDB に保存する;
カテゴリ名を再分類する。
実際のタスクで CPython 2.7.3 と PyPy 2b のパフォーマンスをテストしました。私が使用したライブラリは次のとおりです:
redis 2.7.2
pymongo 2.4.2
また、CPython は次のライブラリでもサポートされています:
hiredis
pymongo c-extensions
テストは主にデータベースの解析で構成されているため、 PyPy からどれだけのメリットが得られるかは予想していませんでした (CPython のデータベース ドライバーが C で書かれていることは言うまでもありません)。
以下にいくつかの興味深い結果について説明します。
Wikiページ名を抽出します
すべてのWikipediaカテゴリのpage.idへのWikiページ名の結合を作成し、再割り当てされたものを保存する必要があります。最も簡単な解決策は、enwiki-page.sql (RDB テーブルを定義する) を MySQL にインポートし、データを転送して再配布することです。しかし、MySQL の要件を増やしたくなかったので (バックボーンが必要です! XD)、純粋な Python で単純な SQL 挿入ステートメント パーサーを作成し、データを enwiki-page.sql から直接インポートして再配布しました。
このタスクは CPU への依存度が高いため、私は PyPy について再び楽観的です。
/ time
PyPy 169.00s ユーザーモード 8.52s システムモード 90% CPU
CPython 1287.13s ユーザーモード 8.10s システムモード 96% CPU
また、page.id->category に対しても同様の結合を行いました (Iラップトップのメモリが小さすぎて、テスト用の情報を保持できません)。
enwiki からカテゴリをフィルターします。したがって、PyPy と CPython の両方で動作するラッパー パーサーである SAX パーサーを選択しました。外部ネイティブ コンパイル パッケージ (PyPy および CPython の同僚)。
コードは非常にシンプルです:
class WikiCategoryHandler(handler.ContentHandler): """Class which detecs category pages and stores them separately """ ignored = set(('contributor', 'comment', 'meta')) def __init__(self, f_out): handler.ContentHandler.__init__(self) self.f_out = f_out self.curr_page = None self.curr_tag = '' self.curr_elem = Element('root', {}) self.root = self.curr_elem self.stack = Stack() self.stack.push(self.curr_elem) self.skip = 0 def startElement(self, name, attrs): if self.skip>0 or name in self.ignored: self.skip += 1 return self.curr_tag = name elem = Element(name, attrs) if name == 'page': elem.ns = -1 self.curr_page = elem else: # we don't want to keep old pages in memory self.curr_elem.append(elem) self.stack.push(elem) self.curr_elem = elem def endElement(self, name): if self.skip>0: self.skip -= 1 return if name == 'page': self.task() self.curr_page = None self.stack.pop() self.curr_elem = self.stack.top() self.curr_tag = self.curr_elem.tag def characters(self, content): if content.isspace(): return if self.skip == 0: self.curr_elem.append(TextElement(content)) if self.curr_tag == 'ns': self.curr_page.ns = int(content) def startDocument(self): self.f_out.write("<root>\n") def endDocument(self): self.f_out.write("<\root>\n") print("FINISH PROCESSING WIKIPEDIA") def task(self): if self.curr_page.ns == 14: self.f_out.write(self.curr_page.render()) class Element(object): def __init__(self, tag, attrs): self.tag = tag self.attrs = attrs self.childrens = [] self.append = self.childrens.append def __repr__(self): return "Element {}".format(self.tag) def render(self, margin=0): if not self.childrens: return u"{0}<{1}{2} />".format( " "*margin, self.tag, "".join([' {}="{}"'.format(k,v) for k,v in {}.iteritems()])) if isinstance(self.childrens[0], TextElement) and len(self.childrens)==1: return u"{0}<{1}{2}>{3}</{1}>".format( " "*margin, self.tag, "".join([u' {}="{}"'.format(k,v) for k,v in {}.iteritems()]), self.childrens[0].render()) return u"{0}<{1}{2}>\n{3}\n{0}</{1}>".format( " "*margin, self.tag, "".join([u' {}="{}"'.format(k,v) for k,v in {}.iteritems()]), "\n".join((c.render(margin+2) for c in self.childrens))) class TextElement(object): def __init__(self, content): self.content = content def __repr__(self): return "TextElement" def render(self, margin=0): return self.contentElement 要素と TextElement 要素にはタグと本文の情報が含まれており、それをレンダリングするメソッドを提供します。 以下は私が欲しいPyPyとCPythonの比較結果です。 /timePyPy 2169.90sCPython 4494.69sPyPyの結果にはとても驚きました。 興味深いカテゴリのセットの計算
私はかつて、アプリケーションの 1 つのコンテキストで、コンピューティング カテゴリから派生したいくつかのカテゴリから始めて、興味深いカテゴリのセットを計算したいと考えていました。これを行うには、クラスを提供するクラス図、つまりサブクラス図を構築する必要があります。
構造クラスとサブクラスの関係図
このタスクは、MongoDB をデータ ソースとして使用し、構造を再配布します。アルゴリズムは次のとおりです:
for each category.id in redis_categories (it holds *category.id -> category title mapping*) do: title = redis_categories.get(category.id) parent_categories = mongodb get categories for title for each parent_cat in parent categories do: redis_tree.sadd(parent_cat, title) # add to parent_cat set title
このような疑似コードを書いて申し訳ありませんが、もっとコンパクトに見せたいのです。
redis_tree (再配布ツリー) の走査
redis_tree データベースがある場合、残る唯一の問題は、[コンピューティング] カテゴリの下にあるすべての達成可能なノードを走査することです。ループトラバーサルを回避するには、訪問したノードを記録する必要があります。 Python のデータベースのパフォーマンスをテストしたかったので、コレクション列を再配布することでこの問題を解決しました。
/ time
結論
実施されたテストは、私の最終的な作業のプレビューにすぎません。それには一連の知識、つまりウィキペディアから適切なコンテンツを抽出して得た一連の知識が必要です。